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Abstract

Introduction 
Healthy People 2010 (HP 2010) objectives call for a 38% 

reduction in the prevalence of diagnosed diabetes mellitus, 
type 1 and type 2, by the year 2010. The process for setting 
this objective, however, did not focus on the achievability 
or the compatibility of this objective with other national 
public health objectives. We used a dynamic simulation 
model to explore plausible trajectories for diabetes preva-
lence in the wake of rising levels of obesity in the U.S. 
population. The model helps to interpret historic trends in 
diabetes prevalence in the United States and to anticipate 
plausible future trends through 2010.

Methods
We conducted simulation experiments using a computer 

model of diabetes population dynamics to 1) track the 
rates at which people develop diabetes, are diagnosed with 
the disease, and die, and 2) assess the effects of various 
preventive-care interventions. System dynamics modeling 
methodology based on data from multiple sources guided 
the analyses.

Results
With the number of new cases of diabetes being much 

greater than the number of deaths among those with the 
disease, the prevalence of diagnosed diabetes in the United 
States is likely to continue to increase. Even a 29% reduc-
tion in the number of new cases (the HP 2010 objective) 
would only slow the growth, not reverse it. Increased dia-
betes detection rates or decreased mortality rates — also 
HP 2010 objectives — would further increase diagnosed 
prevalence.

Conclusion
The HP 2010 objective for reducing diabetes prevalence 

is unattainable given the historical processes that are 
affecting incidence, diagnosis, and mortality, and even a 
zero-growth future is unlikely. System dynamics model-
ing shows why interventions to protect against chronic 
diseases have only gradual effects on their diagnosed 
prevalence.

Introduction

In each of the past three decades, national public health 
objectives in the United States have been set 10 years 
into the future and published as health objectives for the 
nation (1-3). These objectives define specific numerical 
targets for reductions in most major health problems as 
well as for increases in the prevalence of health-promot-
ing behaviors. J. Michael McGinnis, MD, a chief architect 
of the objective-setting enterprise, asserts that, “Of the 
broad range of governmental responsibilities in public 
health, perhaps none is more fundamental than the obli-
gation to provide perspective and direction to guide health 
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programs along a productive course — the agenda-setting 
function” (4).

Considering the widespread use and significance of the 
Healthy People (HP) objectives for planning and evaluat-
ing public health work at all levels of practice, health care 
practitioners may expect national health objectives to 
be feasible, that is, to be achievable within the specified 
time frame. However, HP objectives may not always meet 
this feasibility standard (5). The objectives for 2010, in 
particular, were set on the basis of a policy goal of elimi-
nating health disparities among racial and ethnic groups. 
Consequently, planners used a “better than the best” 
approach wherein each objective was set at a level better 
than that of the “best” (i.e., most healthy) racial or ethnic 
group. That approach advanced health equity as an impor-
tant philosophical ideal, which, in turn, generated an 
ambitious aspiration for health policy-making. But it may 
not have yielded, in all cases, objectives that are achiev-
able and compatible with other public health objectives. 
In addition, the practice of conducting midcourse reviews 
and periodic evaluations of progress toward meeting HP 
objectives may convey the impression that the numerical 
targets are actually achievable by 2010 and are therefore 
meaningful referents for assessing progress (6,7).

Questioning whether long-range objectives can be met 
raises additional questions about the analytic proce-
dures that guide objective-setting itself, which is a com-
plicated dimension of public health science that is still 
poorly understood. In this article, we illustrate how sys-
tem dynamics (SD) simulation modeling can inform the 
development and understanding of national public health 
objectives. Specifically, we use an SD model to 1) interpret 
the historic prevalence record of diagnosed diabetes (as 
used throughout this article, diabetes refers to diabetes 
mellitus, types 1 and 2) in the United States; and 2) antici-
pate the future prevalence of diabetes through 2010 under 
various scenarios.

Figure 1 displays the observed trend in the prevalence 
of diagnosed diabetes (diagnosed prevalence) per 1000 
population from 1980 through 2003 (8). It also illustrates 
the two paths that HP 2000 and HP 2010 objectives indi-
cate for diabetes prevalence (2,3). In 1990, after three 
decades in which diabetes prevalence increased (9), the 
HP 2000 baseline was set on the basis of 1987 data (point 
A), and the HP 2000 objective called for an 11% reduction 
in prevalence by 2000 (point B). Instead, diagnosed preva-

lence increased by 33% between 1987 and 2000 (from point 
B to point D). The official final review of HP 2000 showed 
that prevalence “moved away from target” (10) by 367% 
(calculated by comparing the D-to-B gap with the A-to-B 
target decrease).

 
Figure 1. Diagnosed prevalence of diabetes per �000 total population, 
United States, �980–2003 (8), with Healthy People 2000 and Healthy 
People 2010 objectives (2,3), and simulation model output, for 2003–
20�0 (�3).

The HP 2010 objective, which was based on 1997 data, 
called for an even more ambitious 38% reduction in dia-
betes prevalence, from 39.2% to 25.0% (point C to E). But 
again, surveillance data revealed a worsening trajectory. 
From 1997 to 2003, diabetes prevalence increased another 
25% (point C to point F), making the 2010 objective even 
more unattainable.

What accounts for these discrepancies between preva-
lence objectives and actual prevalence data? Are they 
due to poor performance of the overall national health 
protection strategy, which includes an array of separately 
focused programs and policies (11)? Or are they perhaps 
the result of a flaw in how the numerical targets are 
derived? If the latter is the case, what is a more plausible 
estimate of the actual trajectory of U.S. diabetes preva-
lence through 2010? 

Methods

Members of the Centers for Disease Control and 
Prevention (CDC) Diabetes System Modeling Project 
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sought to answer these questions by conducting a series 
of simulation experiments using an existing SD model 
designed specifically to explore the population dynamics 
of diabetes among adults in the United States (12,13). The 
model was designed to explore the incremental effects 
various possible policy interventions could have on the 
burden of diabetes. To achieve this result, the SD model, 
unlike other diabetes models (for example, a Markov 
model by Honeycutt et al [14]), comprehensively accounts 
for a chain of population flows that begins when a person 
becomes at risk for diabetes and continues through initial 
onset, diagnosis, progression, and death. Such breadth of 
scope allows the SD model to anticipate nonlinear changes 
in variables, such as the incidence rate, that narrower 
models would miss (22).

We developed the SD diabetes model using well-estab-
lished techniques for model formulation and testing (15-
21). Data from the National Health Interview Survey, 
the National Health and Nutrition Examination Survey 
(NHANES), the Behavioral Risk Factor Surveillance 
System, the U.S. Census Bureau, and publications in the 
scientific literature provided the empirical foundation 
for parameter selection and estimation. We were able to 
draw some parameter estimates directly from available 
information, and we obtained others through a process 
of historical curve-fitting analogous to statistical regres-
sion. (For more detail on the sources and methods used 
in determining the parameters for the SD diabetes model, 
see references 13 and 22.)

Structure of the diabetes system 

The SD diabetes model specifies how population groups 
accumulate in several states of health (e.g., prediabetes, 
uncomplicated diabetes, complicated diabetes) along with 
the rates at which people flow from one state to another. 
The full model contains many such states and rates (13); 
however, in Figure 2 we show only a simplified and generic 
view for explanatory purposes.

Figure 2 depicts a generic stock-and-flow structure that 
can be used to illustrate the diagnosed prevalence for 
any disease. One may think of the box labeled diagnosed 
prevalence as a bathtub in which the water level repre-
sents the number of people who have been diagnosed with 
a disease (23). The rate at which a condition is diagnosed, 
diagnosed onset, is analogous to the rate at which water 
flows into the bathtub. The rates of recovery or death for 

people with diagnosed disease are analogous to the rates 
at which water flows out of the bathtub through two 
separate drains. As Figure 2 illustrates, all changes in 
diagnosed prevalence must be accounted for by changes in 
these related flows. (For a complete accounting, the flows 
of births, migration, and recovery among the undiagnosed, 
as well as deaths among those without the disease and 
deaths among the undiagnosed, would be needed, but for 
clarity these are not depicted in Figure 2.)   

Following is a summary of how the generic elements of 
Figure 2 relate specifically to diabetes:

• Diagnosed prevalence: Figure 1 provides historical data 
for 1980 through 2003. In 2000, about 12.0 million 
people of all ages in the United States had diagnosed 
diabetes; of these 12.0 million people, 98% were adults 
aged 20 years and older. This percentage translates to 
about 4.4% of the total population and 6.0% of the adult 
population (14,24).

• Diagnosed onset: About 880,000 people were newly diag-
nosed with diabetes in 1997, and that figure rose to 1.1 
million by 2000. Of these 1.1 million people, more than 
96% were adults. This percentage translates to a diag-
nosis rate among the adult population of about 5.2 per 
1000 in 2000 (14,24).

• Recovery: Recovery is a significant factor in prevalence 
calculations for many acute illnesses; however, in diabe-
tes, as for all chronic diseases without a cure, it is not a 
factor.

• Deaths among people with diagnosed diabetes: Diabetes, 
like many other chronic diseases, has a relatively low 
annual death rate. In 2000, of the 12.0 million people 
with diagnosed diabetes, about 500,000 (4.2%) died (14). 
Of these deaths, 213,000 (a rate of 1.8% per year among 
Americans with diabetes) were related to complications 
of the disease (24).

 
Figure 2. Generic stock-and-flow structure for diagnosed prevalence of a 
disease. 
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• Undiagnosed prevalence: Since 1976, researchers have 
tested blood glucose levels in random samples of adults 
without diagnosed diabetes who were participants in 
the periodic NHANES (9) to determine if they had dia-
betes. By dividing the number of people found to have 
diabetes by the total number of people tested, research-
ers estimated the fraction of Americans with diabetes 
whose disease was undiagnosed for each of the following 
NHANES periods: 1976–1980: 38%; 1988–1994: 36%; 
and 1999–2000: 29% (25).

• Initial Onset: There is no actual measure of the rate of 
initial onset of diabetes (i.e., the number of people per 
year who develop diabetes) as opposed to the rate of dia-
betes diagnosis. However, we estimated the initial onset 
rate by combining the data described above on diagnosed 
prevalence, undiagnosed prevalence, and death using 
the causal logic of Figure 2. According to our estimates, 
in 2000, 1.25 million U.S. adults experienced the initial 
onset of diabetes, a rate of 6.0 people per 1000.

• Population without diabetes: This category includes 
people with normal blood glucose levels and those with 
prediabetes, a condition in which levels are moderately 
elevated (26). According to estimates based on blood test 
data from NHANES 1988–1994, about 40% of Americans 
aged 40 to 74 years had prediabetes (24,26). We extrapo-
lated this figure to the rest of the adult population, 
using historical data on age-specific diabetes incidence 
(14), to estimate differences in prediabetes prevalence 
between people aged 18 to 39 years and those aged 75 
and older. Projecting forward in time, we estimated that 
at least 52 million (25%) of Americans aged 18 and older 
had prediabetes in 2000.  

Exploring scenarios for the future 

The SD model employed in our simulations tracks the 
flows and accumulations of people with normal blood glu-
cose levels, undiagnosed or diagnosed prediabetes, undi-
agnosed or diagnosed diabetes without complications, and 
undiagnosed or diagnosed diabetes with complications. In 
the model, we specify key factors — some of them potential-
ly amenable to policy intervention — that may change over 
time and that affect the model’s population flows. These 
variable policy factors include the prevalence of obesity 
(i.e., the leading modifiable risk factor for diabetes); the 
prevalences of glycemic screening, prediabetes manage-
ment, and diabetes management; as well as the percent-
age of the population with access to preventive care (13). A 
scenario involves specified future values for each variable 

factor. The model can then simulate the consequences 
of any given scenario for future trajectories of diagnosed 
prevalence and other measures of disease burden.

Results

A status quo scenario 

Beginning in 2004, results from the first simulation 
experiment focus on a status quo future, in which we 
assumed no further changes in the scope or effectiveness 
of prevention, detection, or management efforts or in the 
prevalence of obesity. In Figure 1, the line marked status 
quo (from point F to G) shows the projected prevalence 
of diagnosed diabetes through 2010 under these assump-
tions. Diagnosed prevalence is projected to rise through-
out this period because the inflow of people with newly 
diagnosed diabetes is projected to exceed the rate at which 
people are dying. Under this scenario, the prevalence of 
diagnosed diabetes is projected to increase 21%, from 48.9 
per 1000 in 2003 to 59.1 per 1000 in 2010 (point F to G).

A straightforward comparison of the estimates of inflow 
(diagnosis) and outflow (death) explains why the upward 
trend in diabetes prevalence, which began around 1990, 
will not soon abate. If the diagnosed onset rate in 2000 
of approximately 1.1 million cases per year and the 
death rate of about 500,000 per year were to stay the 
same, we projected that the diagnosed prevalence will 
continue to increase. Although the model suggests that 
this gap between inflow and outflow is gradually closing, 
the inflow of diagnosed diabetes onset would have had to 
drop substantially (e.g., by about 50% in 2006) just for 
diagnosed prevalence to stop increasing, let alone to begin 
decreasing.

Accounting for program and policy interventions   

Our SD model reveals certain insights about the long-
term effects of interventions to reduce onset, boost detec-
tion, or better manage diabetes. For example, aside from 
reducing prevalence, another HP 2010 objective calls 
for the percentage of people with diagnosed diabetes to 
increase from 68% to 80% (Objective 5-4) (3). Such an 
increase in diagnoses would, in terms of Figure 2, increase 
the inflow of people diagnosed with the disease. Thus, 
the prevalence of diagnosed diabetes would also increase. 
Figure 1 quantifies the effect of this scenario as the 
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difference between points H and G (i.e., 63.2 vs 59.1 in 
the year 2010).

Another HP 2010 objective calls for an 11% reduction in 
the diabetes-attributable death rate (Objective 5-6) (3), a 
result presumably to be achieved through improved dis-
ease management. As Figure 2 indicates, a reduction in 
deaths would also increase diagnosed prevalence because 
more people with the disease would remain alive. (Figure 
1 does not display a curve for this scenario because it 
overlaps the status quo line [i.e., 59.3 vs 59.1 in the year 
2010]). 

The inconsistency in these HP 2010 objectives for dia-
betes is clear: meeting the objectives for increasing the 
diagnosis rate or decreasing the mortality rate would tend 
to increase the prevalence of diagnosed diabetes.

One type of public health intervention that could possi-
bly reduce the diagnosed prevalence of diabetes would be 
one aimed at reducing the initial onset rate. HP 2010 calls 
for a 29% reduction in the number of new diabetes diagno-
ses per 1000 (Objective 5-2) (3), presumably to be achieved 
through enhanced efforts to detect and manage prediabe-
tes. This effort would, perhaps, be combined with efforts to 
reduce the prevalence of obesity in the general population. 
A reduction in the inflow resulting from diagnosed disease 
onset is clearly a move in the right direction because it 
leads to a lower diagnosed prevalence than would be the 
case under the status quo (i.e., without an intervention to 
reduce disease onset). But a reduction in diagnosed preva-
lence relative to the status quo is not the same as an abso-
lute reduction over time — an actual reversal of growth. 
We described previously how a straightforward compari-
son of the inflow and outflow rates in Figure 2 indicates 
that a reduction in the onset of diagnosed diabetes on the 
order of 50% would be required to halt the growth in diag-
nosed prevalence. However, the question still remains: to 
what extent could a significant reduction in onset at least 
slow the growth of diagnosed prevalence? 

To address this question, we simulated an interven-
tion begun in 2003 that would reduce the rate of diabetes 
onset 29% below its 1997 level by 2010. In this scenario, 
as shown in Figure 1, the prevalence of diagnosed diabetes 
increases by 7% (from F to I) per 1000 population from 
2003 to 2010 as compared with increasing by 21% (from 
F to G) in the status quo scenario (i.e., 52.3 vs 59.1 in the 
year 2010). This slower growth in the number of people 

with diagnosed diabetes certainly would improve the 
overall disease picture, but it would not yield a decline in 
diabetes prevalence.

The simulation modeling thus helps quantify what the 
stock-and-flow logic of Figure 2 and previously described 
numerical analysis suggested: that the HP 2010 target of 
a 29% reduction in the rate of diabetes onset is too modest 
a reduction to achieve the desired reduction in prevalence 
and can only slow its growth.

The SD model can also be used to explore more extreme 
possibilities. For example, what would happen if initial 
onset of undiagnosed diabetes had dropped suddenly to 
zero during 2004? Even under this impossible-to-achieve 
scenario, diagnosed prevalence would decrease by only 
14% from 2003 to 2010 (data not shown). This decrease 
is relatively small partly because cases of diabetes will 
continue to be diagnosed during this period even though 
initial onset has ceased, and partly because of the rela-
tively low death rate among people with diabetes (about 
4% per year). Thus, even this most optimistic scenario of a 
14% reduction in diagnosed prevalence of diabetes during 
2003 through 2010 falls far short of the 38% objective of 
HP 2010.

Discussion

Charting plausible paths 

Findings from our study indicate that the HP 2010 
objective for reducing diagnosed diabetes prevalence by 
38% will not be achieved — not because of ineffective or 
underfunded health protection efforts but because the 
objective itself is unattainable. Moreover, if current invest-
ments in diabetes screening and disease management con-
tinue to succeed in diagnosing a greater number of people 
and in enabling people to live longer with the disease, then 
diagnosed prevalence will move still farther away from the 
HP 2010 target.

In setting long-range numerical targets for health objec-
tives, particularly those that may be viewed as interven-
tion outcomes, it is important to recognize that the diag-
nosed prevalence metric is subject to misinterpretation 
and to unrealistic expectations for two basic reasons:

• The task of setting plausible prevalence objectives 
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requires an understanding that the growth in preva-
lence of many chronic diseases can, at best, be slowed, 
and it can be reversed only gradually. This is because the 
number of deaths from chronic disease is small relative 
to increases resulting from disease onset (perhaps, as in 
the case of diabetes, because of a decades-long increase 
in the at-risk population), and there is no significant 
reduction as a result of people recovering from chronic 
diseases. Therefore, the task of reducing prevalence is 
comparable to attempting to return a fast-moving train 
to a station that it passed miles back: the first step is to 
slow the train down, not to reverse its direction.

• As a result of successful interventions to increase dis-
ease detection and management, people are living longer 
with chronic diseases rather than dying prematurely. 
But by increasing detection and extending life, such 
interventions also have the effect of increasing diag-
nosed prevalence of these diseases. The only practical 
way of slowing the growth in diagnosed prevalence is 
through health protection programs that reduce the rate 
of disease onset. However, onset must not only decline. 
It must fall far enough to more than offset the increase 
in disease prevalence resulting from improved detection 
and management. It will be impossible to set achievable 
prevalence-reduction objectives unless this relationship 
is taken into consideration.

If prevalence objectives are to be attainable within their 
specified time frame, it is important first to recognize what 
the disease trajectory would be under status quo assump-
tions and then to factor in the effects of any planned inter-
ventions, recognizing that measurable success in one area 
(e.g., an increase in the percentage of cases diagnosed) 
may reduce apparent progress in others (e.g., decreased 
prevalence). In the case of diabetes, we found in our simu-
lation experiments that under current conditions, that 
is, without any new interventions, diagnosed prevalence 
would increase 21% from 2003 to 2010. Proposed detection 
and management initiatives, if successful, would increase 
that number even further. If disease prevalence is to serve 
as a benchmark for assessing the performance of national 
public health interventions, then prevalence-reduction 
goals must account for the compounding effects of success-
ful disease detection and management interventions.

Recognizing the benefits of formal modeling 

Simulation modeling helps improve our collective 
understanding of health and disease dynamics, and in 

turn supports the development of long-range objectives 
that are both achievable and mutually consistent. Such 
models enable planners and policy makers to explore 
for themselves the plausible short- and long-term con-
sequences of historic trends and to compare the effects 
of alternative interventions before committing limited 
resources. For that reason, diabetes program planners in 
Vermont have worked with members of the CDC Diabetes 
System Modeling team to use the model described here as 
a support for their efforts to set plausible and internally 
consistent objectives for diabetes-related outcomes at the 
state level (28,29). Planners in Minnesota, California, 
Alabama, Tennessee, and Florida are currently exploring 
similar uses.

Without the reality checks available through formal 
simulation experiments, long-range target-setting may 
fall prey to the weaknesses of flawed and sometimes 
biased intuition (mental models) (17,23). Popular concep-
tions about how certain phenomena change over time 
may often fail to account for real-world sources of iner-
tia and delay and may suggest that things can change 
more rapidly than is actually possible. The prevalence 
of a chronic disease like diabetes changes only gradually 
because, as noted above, people with such conditions die 
at a relatively slow rate, and there is currently no cure 
for these conditions. In this respect, chronic diseases are 
unlike many acute infectious diseases such as influenza or 
measles, whose victims do not linger in the disease condi-
tion for years but instead recover or die relatively quickly. 
For such acute diseases, the large outflow creates a close 
correlation between decreases in the rate of onset and 
in diagnosed prevalence. For chronic illnesses, however, 
decreases in onset rates do not correlate with immedi-
ate decreases in prevalence; instead, they correlate with 
prevalence increasing more slowly.

Those working to prevent and manage chronic diseases 
may use stock-and-flow diagrams to develop a clearer 
understanding of the characteristic dynamics of these 
diseases. In addition, simulation experiments may bring 
new insights to the task of setting realistic and achievable 
goals for the nation’s health. That approach could help 
ensure that numerical objectives are mutually consistent 
and achievable within their stated time frames. The objec-
tives may still be difficult to achieve in practice and in that 
sense may be aspirational. But even aspirational objec-
tives can and should be crafted in a way that is consistent, 
logical, and feasible given the causal structure of the sys-
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tem and the historical processes under way, particularly 
those responsible for the pattern of increasing incidence 
and diagnosis, as well as declining mortality.

Although simulation models can help improve our under-
standing of chronic disease dynamics, they have several 
inherent limitations. All models are incomplete simplifi-
cations of reality, and their conclusions are affected both 
by structural boundaries and by the uncertainties of the 
data with which they are calibrated (29). Techniques such 
as boundary critique (30) and sensitivity testing (17,31) 
can be used to assess the extent to which models may 
be affected by these simplifications and uncertainties. In 
the case of the diabetes SD model, sensitivity testing sug-
gests that the magnitudes of its simulated futures, such 
as those seen in Figure 1, are subject to some imprecision 
because of uncertainties about input parameters, but that 
the directions of change and thus our general findings are 
unaffected by these uncertainties.

Even with their inevitable imprecision and incomplete-
ness, simulation models can enhance learning and decision 
making, and that is their primary purpose (17,32). These 
tools can improve our collective understanding about how 
interventions will affect health indicators over many years 
within the complex systems of cause and effect that shape 
the public’s health.
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