Summary of Notifiable Diseases --- United States, 2000
The following CDC staff members contributed to this report:
Samuel L. Groseclose, D.V.M., M.P.H.
Wayne S. Brathwaite
Patsy A. Hall
Carol M. Knowles
Deborah A. Adams
Felicia Connor
Michele Hester
Pearl Sharp
Willie J. Anderson
Robert F. Fagan
J. Javier Aponte
Gerald F. Jones
David A. Nitschke
Jim Vaughan
Carol A. Worsham
Manhuei Chang, M.P.H.
Timothy Doyle, M.P.H.
Ruth Ann Jajosky, D.M.D., M.P.H.
Division of Public Health Surveillance and Informatics
Epidemiology Program Office
in collaboration with
Scott Noldy
EDS Corp.
Preface
The MMWR Summary of Notifiable Diseases, United States,
2000 contains, in tabular and graphical form, the official statistics for the reported occurrence of
nationally notifiable diseases in the United States for 2000. These statistics are collected and
compiled from reports to the National Notifiable Diseases Surveillance System
(NNDSS), which is operated by CDC in collaboration with the Council of State and
Territorial Epidemiologists (CSTE).
Because dates of onset or diagnosis for notifiable diseases are not always
reported, surveillance data are presented by the week they were reported to CDC by public
health officials in state and territorial health departments. Data are finalized and
published each year in the Summary for use by state and local health departments; schools
of medicine and public health; communications media; local, state, and federal
agencies; and other agencies or persons interested in following the trends of reportable
diseases in the United States. This publication also documents which diseases are
considered national priorities for notification and the annual number of cases of such diseases.
The Highlights section presents information on selected nationally notifiable
diseases to provide a context in which to interpret surveillance and disease-trend
data and to provide further information on the epidemiology and prevention of
selected diseases. Past publications included information on selected non-notifiable
diseases, but in 1999, the Summary began presenting only highlights of nationally
notifiable diseases.
Part 1 contains tables of incidence data for each disease considered nationally
notifiable during 2000.* These tables provide the number of cases of notifiable
diseases reported to CDC for 2000, as well as the distribution of cases by month and
geographic location and by patient's age, sex, race, and Hispanic ethnicity. Data are final totals
as of August 24, 2001, unless otherwise noted. In all tables, leprosy is listed as
Hansen disease, and tickborne typhus fever is listed as Rocky Mountain spotted fever
(RMSF). In addition, syphilis (all stages) includes the following categories: latent; early
latent; late latent; latent of unknown duration; neurosyphilis; late, with clinical
manifestations other than neurosyphilis; syphilitic stillbirth; and congenital syphilis. Part 2
contains graphs and maps that depict summary data for many of the notifiable diseases
described in tabular form in Part 1. Part 3 contains tables of the number of cases
of notifiable diseases reported to CDC since 1969. This section also includes a table
enumerating deaths associated with specified notifiable diseases reported to the
National Center for Health Statistics (NCHS), CDC, during 1989--1998.
The Selected Reading section presents general and disease-specific references
for notifiable infectious diseases. These references provide additional information on
surveillance and epidemiologic issues, diagnostic issues, and disease-control activities.
____________________
* Because no cases of paralytic poliomyelitis, western equine encephalitis, or yellow fever
were reported in the United States during 2000, these diseases do not appear in the tables in Part 1.
Background
As of January 1, 2000, a total of 60 infectious diseases were designated as
notifiable at the national level. A notifiable disease is one for which regular, frequent, and
timely information regarding individual cases is considered necessary for the prevention
and control of the disease. This section briefly summarizes the history of the reporting
of nationally notifiable diseases in the United States.
In 1878, Congress authorized the U.S. Marine Hospital Service (the forerunner
of the Public Health Service [PHS]) to collect morbidity reports regarding cholera,
smallpox, plague, and yellow fever from U.S. consuls overseas. The intention was to use
this information to institute quarantine measures to prevent the introduction and spread
of these diseases into the United States. In 1879, a specific Congressional
appropriation was made for the collection and publication of reports of these notifiable
diseases. Congress expanded the authority for weekly reporting and publication of these
reports in 1893 to include data from states and municipal authorities. To increase the
uniformity of the data, Congress enacted a law in 1902 directing the Surgeon General
to provide forms for the collection and compilation of data and for the publication
of reports at the national level. In 1912, state and territorial health authorities in
conjunction with PHS recommended immediate telegraphic reporting of five
infectious diseases and the monthly reporting, by letter, of 10 additional diseases. The first
annual summary of The Notifiable Diseases in 1912 included reports of 10 diseases
from 19 states, the District of Columbia, and Hawaii. By 1928, all states, the District of
Columbia, Hawaii, and Puerto Rico were participating in national reporting of 29
specified diseases. At their annual meeting in 1950, state and territorial health officers
authorized the Council of State and Territorial Epidemiologists (CSTE) to determine
which diseases should be reported to PHS. In 1961, CDC assumed responsibility for the
collection and publication of data concerning nationally notifiable diseases.
The list of nationally notifiable diseases is revised periodically. For example, a
disease might be added to the list as a new pathogen emerges, or a disease might
be deleted as its incidence declines. Public health officials at state health departments
and CDC continue to collaborate in determining which diseases should be nationally
notifiable. CSTE, with input from CDC, makes recommendations annually for additions
and deletions. Although disease reporting is mandated by legislation or regulation at
the state and local levels, state reporting to CDC is voluntary. Thus, the list of
diseases considered notifiable varies slightly by state. All states generally report the
internationally quarantinable diseases (i.e., cholera, plague, and yellow fever) in compliance
with the World Health Organization's International Health Regulations.
Infectious Diseases Designated as Notifiable
at the National Level During 2000
Acquired immunodeficiency syndrome (AIDS)
Anthrax
Botulism
Brucellosis
Chancroid
Chlamydia trachomatis,
genital infection
Cholera
Coccidioidomycosis
Cryptosporidiosis
Cyclosporiasis
Diphtheria
Ehrlichiosis, human granulocytic
Ehrlichiosis, human monocytic
Encephalitis, California serogroup viral
Encephalitis, eastern equine
Encephalitis, St. Louis
Encephalitis, western equine
Escherichia coli O157:H7
Gonorrhea
Haemophilus influenzae,
invasive disease
Hansen disease (leprosy)
Hantavirus pulmonary syndrome
Hemolytic uremic syndrome, postdiarrheal
Hepatitis A
Hepatitis B
Hepatitis C; non-A, non-B
Human immunodeficiency virus (HIV) infection, adult
HIV infection, pediatric
Legionellosis
Listeriosis
Lyme disease
Malaria
Measles
Meningococcal disease
Mumps
Pertussis
Plague
Poliomyelitis, paralytic
Psittacosis
Q Fever
Rabies, animal
Rabies, human
Rocky Mountain spotted fever
Rubella
Rubella, congenital syndrome
Salmonellosis
Shigellosis
Streptococcal disease, invasive, group A
Streptococcus pneumoniae, drug-resistant, invasive disease
Streptococcal toxic-shock syndrome
Syphilis
Syphilis, congenital
Tetanus
Toxic-shock syndrome
Trichinosis
Tuberculosis
Tularemia
Typhoid fever
Varicella (chickenpox)*
Varicella deaths
Yellow fever
____________________
* Although varicella (chickenpox) is not a nationally notifiable disease, the Council of State
and Territorial Epidemiologists recommends reporting cases of this disease to CDC.
Data Sources
Provisional data concerning reported occurrence of notifiable diseases are
published weekly in MMWR. After each reporting year, staff members in state health
departments finalize reports of cases for that year with local or county health departments and
reconcile the data with reports previously sent to CDC throughout the year. These data
are compiled in final form in the Summary.
Notifiable disease reports are the authoritative and archival counts of cases.
They must be approved by the appropriate epidemiologist from each submitting state
or territory before being published in the
Summary. Although useful for detailed epidemiologic analyses, data published in
CDC Surveillance Summaries or other surveillance reports produced by CDC programs might not agree with data reported in
the Summary because of differences in the timing of reports, source of data, and
case definitions.
Data in the Summary were derived primarily from reports transmitted to the
Division of Public Health Surveillance and Informatics, Epidemiology Program Office,
CDC, from health departments in the 50 states, five territories, New York City, and the
District of Columbia through the National Electronic Telecommunications System for
Surveillance (NETSS). More information regarding NETSS and notifiable diseases,
including case definitions for these conditions, is available on the Internet at
<http://www.cdc.gov/epo/phs.htm>. Policies for reporting notifiable disease cases can vary by disease
or reporting jurisdiction, depending on case status classification (i.e., confirmed,
probable, or suspect).
Final data for selected diseases (presented in Parts 1, 2, and 3 of the
Summary) are from the surveillance records of CDC programs listed below. Requests for further
information regarding these data should be directed to the appropriate program.
National Center for Health Statistics (NCHS)
Office of Vital and Health Statistics Systems (deaths from selected notifiable
diseases).
National Center for Infectious Diseases (NCID)
Division of Bacterial and Mycotic Diseases (toxic-shock syndrome and laboratory
data for botulism, Escherichia coli O157:H7, salmonellosis, and shigellosis).
Division of Viral and Rickettsial Diseases (animal rabies and hantavirus
pulmonary syndrome).
National Center for HIV, STD, and TB Prevention (NCHSTP)
Division of HIV/AIDS Prevention Surveillance and Epidemiology (acquired
immunodeficiency syndrome [AIDS]).
Division of Sexually Transmitted Diseases Prevention (chancroid, chlamydia,
gonorrhea, and syphilis).
Division of Tuberculosis Elimination (tuberculosis).
National Immunization Program (NIP)
Epidemiology and Surveillance Division (poliomyelitis).
Disease totals for the United States, unless otherwise stated, do not include data
for American Samoa, Guam, Puerto Rico, the U.S. Virgin Islands, or the Commonwealth
of the Northern Mariana Islands (CNMI).
Population estimates for the states are from the Bureau of the Census
(19911999, machine readable files). Population numbers for territories are 1998 estimates from
the Bureau of the Census press releases PR-99-1* and
CB98-219. More information
regarding census estimates is available at <http://www.census.gov/>.
Rates in the Summary are presented as incidence rates per 100,000
population based on data for the U.S. total-resident population. Population data from states
in which diseases were not notifiable or disease data were not available were
excluded from rate calculations. The denominator used for infant botulism rate calculation
is restricted to persons aged <1 year.
Interpreting Data
Data reported in the Summary are useful for analyzing disease trends and
determining relative disease burdens. However, data must be interpreted in light of
reporting practices. Certain diseases that cause severe clinical illness (e.g., plague and
rabies) are most likely reported accurately if they are diagnosed by a clinician.
However, persons who have diseases that are clinically mild and infrequently
associated with serious consequences (e.g., salmonellosis) might not seek medical care from
a health-care provider. Even if these less severe diseases are diagnosed, they are
less likely to be reported.
The degree of completeness of data reporting also is influenced by the
diagnostic facilities available; control measures in effect; public awareness of a specific
disease; and interests, resources, and priorities of state and local officials responsible for
disease control and public health surveillance. Finally, factors such as changes in
case definitions for public health surveillance, introduction of new diagnostic tests, or
discovery of new disease entities can cause changes in disease reporting that are
independent of the true incidence of disease.
Public health surveillance data are published for selected racial and ethnic
population groups because these variables can be risk markers for certain notifiable
diseases. Risk markers can identify potential risk factors for investigation in future studies.
Race and ethnicity data also can be used to target populations for prevention efforts.
However, caution must be used when drawing conclusions from reported race and
ethnicity data. Certain racial/ethnic population groups have differential patterns of access
to health care, potentially resulting in data that are not representative of disease
incidence in these populations.
In addition, not all race and ethnicity data are collected uniformly for all
diseases. For example, in NCHSTP, the Division of HIV/AIDS Prevention Surveillance and
Epidemiology and the Division of Sexually Transmitted Diseases Prevention collect
race/ethnicity data using a single variable. A person's race/ethnicity is reported as
American Indian/Alaska Native, Asian/Pacific Islander, black non-Hispanic, white non-Hispanic,
or Hispanic. Additionally, although the recommended standard for classifying a
person's race or ethnicity is based on self-reporting, this procedure might not always be followed.
This section presents information on the public health importance of selected
nationally notifiable diseases reported from the states to CDC, including a)
domestic and some international disease outbreaks, b) active surveillance findings, c)
changes in data reporting practices, d) the impact of prevention programs, e) the emergence
of antimicrobial resistance, and f) changes in immunization policies. This information
is intended to provide a context in which to interpret surveillance and disease-trend
data and to provide further information on the epidemiology and prevention of
selected diseases.
AIDS*
As of December 31, 2000, a total of 774,467 acquired immunodeficiency
syndrome (AIDS) cases were reported; 448,060 cases resulted in death, and 3,542 cases had
unknown vital status. Of the total, approximately one third of cases were reported
during 1993--1995 and 1996--2000; the remaining third were reported before 1993.
The number of persons presumed living with AIDS (322,865) at the end of 2000 was
the highest ever reported; of these persons, 79% were men, 61% were black or
Hispanic, and 41% were infected through male-to-male sex. Since 1981, approximately 85%
of persons diagnosed with AIDS have been aged 20--49 years
(1).
From January 1998 through June 2000, AIDS incidence and deaths leveled off,
but AIDS prevalence continued to increase. The number of reported cases is affected
by epidemic trends and other factors that can affect case reporting (e.g., changes in
the AIDS surveillance case definition and widespread introduction of effective treatments).
To provide better data for prevention of human immunodeficiency virus (HIV)
infection (the virus that causes AIDS), CDC and CSTE recommend that national
surveillance include the monitoring of both HIV infection and AIDS
(2,3). CDC supports several supplemental surveillance projects that collect data on barriers to preventing
AIDS cases and death of persons with AIDS, including access to HIV testing and treatment
in accordance with current public health service guidelines.
Council of State and Territorial Epidemiologists. CSTE position statement ID-4: National
HIV surveillance---addition to the National Public Health Surveillance System. Atlanta, GA:
Council of State and Territorial Epidemiologists, 1997.
____________________
* For information on HIV infection, see page xiv.
Chancroid
During 2000, a total of 78 cases of chancroid were reported (rate: 0.03
cases/100,000 population), representing a 45% decline from 1999 and a continuing decline since
1987 (1). However, chancroid is difficult to culture and could be substantially
underdiagnosed. Several studies that used DNA amplification tests (which are not commercially
available) have identified this infection in cities where it was previously
undetected (2).
CDC. Sexually transmitted disease surveillance 2000. Atlanta, GA: US Department of
Health and Human Services, Public Health Service, CDC, 2001.
Mertz KJ, Trees D, Levine WC, et al. Etiology of genital ulcers and prevalence of
human immunodeficiency virus coinfection in 10 US cities. The Genital Ulcer Disease
Surveillance Group. J Infect Dis 1998;178:1795--8.
Chlamydia trachomatis, Genital Infection
During 2000, a total of 702,093 cases of genital chlamydial infection were
reported (rate: 257.5/100,000). This rate was the highest since voluntary case
reporting began in the mid-1980s and the highest since genital chlamydial
infection became a nationally notifiable disease in 1995
(1). This increase could be caused in part by the continued expansion of chlamydia screening programs and increased
use of more sensitive diagnostic tests for this condition. Since the late 1980s, data
on chlamydia prevalence obtained by monitoring test positivity rates of persons
screened in different clinic settings have generally documented declining levels of infection
in many parts of the United States (1).
CDC. Sexually transmitted disease surveillance 2000. Atlanta, GA: US Department of
Health and Human Services, Public Health Service, CDC, 2001.
Cholera
During 1995--2000, a total of 61 laboratory-confirmed cases of cholera, all caused
by Vibrio cholerae O1, were reported. Thirty-five (57%) patients were hospitalized,
and one died. Thirty-seven (61%) infections were acquired outside the United
States, whereas six (10%) were acquired through consumption of contaminated seafood
harvested in Gulf Coast waters. Among the 37 travel-associated cholera cases, 31%
of isolates were resistant to trimethoprim-sulfamethoxazole, sulfisoxazole,
streptomycin, and furazolidone. Thus, foreign travel and contaminated seafood continue to
account for most cholera cases in the United States, and antimicrobial resistance is
increasing among V. cholerae O1 strains isolated from ill travelers
(1). Production and sale of the only licensed cholera vaccine in the United States ceased in 2001.
Steinberg EB, Greene KD, Bopp CA, Cameron DN, Wells JG, Mintz ED. Cholera in the
United States, 1995--2000: trends at the end of the millennium. J Infect Dis 2001;184:799--802.
Diphtheria
During 2000, one confirmed case of diphtheria was reported from California in
a female patient aged 86 years who had acute membranous pharyngitis. A culture
taken from the patient was positive for Corynebacterium
diphtheriae, but toxigenicity testing was not conducted. Non-toxigenic
C. diphtheriae can cause localized membranous
pharyngitis.
Ehrlichiosis
During 2000, the second full year of national reporting of the emerging
tick-borne zoonosis ehrlichiosis, 200 cases of human monocytic ehrlichiosis (HME) and 351
cases of human granulocytic ehrlichiosis (HGE) were reported through NETSS. By
comparison, 99 cases of HME and 203 cases of HGE were reported during 1999
(1) Through December 2000, ehrlichiosis was a notifiable disease
in36 states, compared with 19 states through August 1998
(2).
In 2000, CSTE changed the case definition for human ehrlichiosis. A third
reporting category (i.e., ehrlichiosis, other or unspecified agent) was added to
clarify reporting criteria and provide a mechanism for classifying and reporting cases
caused by unspecified or novel Ehrlichia species, including
E. ewingii (3).
In addition to reporting via NETSS, case information on the
three categories of ehrlichiosis also should be reported on the revised Tick-Borne Rickettsial Disease
Case Report form (CDC 55.1 Rev. 01/2001), which was distributed to state health
departments in April 2001 and replaces all previous Rocky Mountain Spotted Fever Case
Report forms. Copies of this form are available at
<http://www.cdc.gov/ncidod/dvrd/ehrlichia> and <http://www.cdc.gov/ncidod/dvrd/rmsf>.
McQuiston JH, Paddock CD, Holman RC, Childs JE. The human ehrlichioses in the
United States. Emerg Infect Dis 1999;5:635--42.
Council of State and Territorial Epidemiologists. CSTE position statement ID-3: Changes in
the case definition for human ehrlichiosis, and addition of a new ehrlichiosis category as a
condition placed under surveillance according to the National Public Health Surveillance System
(NPHSS). Atlanta, GA: Council of State and Territorial Epidemiologists, 2000. Available at
<http://www.cste.org/ps/2000/2000-id-03.htm>.
Encephalitis
During 1999, a summer epidemic of acute meningoencephalitis of unknown
etiology in the greater New York City area, with 62 human cases and seven fatalities,
signaled the first known introduction of West Nile virus from the Eastern Hemisphere
to the Western Hemisphere (1). Urban Culex
species were the apparent primary mosquito vectors to humans. Birds were the primary amplifying hosts, and
unprecedented morbidity and mortality were observed among some native bird species,
especially crows. Previously, the known geographic distribution of West Nile virus included
Africa, West Asia, and Europe (2). West Nile virus is related closely to St. Louis
encephalitis virus, historically the major cause of epidemic viral encephalitis in
the United States.
During early 2000, West Nile virus was detected in dormant mosquitoes collected
in the northeastern United States, indicating its successful overwintering and
potential reemergence across a larger area of the eastern United States during the
following spring and summer (3). During the summer and fall of 2000, a total of 21 cases of
West Nile viral disease among humans were reported from the greater New York City
area (14 in New York, six in New Jersey, and one in Connecticut); two of these cases
were fatal (4).
Nash D, Mostashari F, Fine A, et al. The outbreak of West Nile virus infection in the New
York City area. N Eng J Med 2001;344:1807--14.
Hayes CG. West Nile fever. In: Monath TP, ed. The arboviruses: epidemiology and
ecology. Vol. V. Boca Raton, FL: CRC Press, 1989:59--88.
During 2000, a total of 358,995 cases of gonorrhea were reported (rate:
131.6/100,000). The 2000 rate was similar to rates for 1999 (132.0/100,000) and 1998
(121.4/100,000) (1). Although rates have stabilized, increases have been observed in
some areas among men who have sex with men
(2). Additionally, decreased susceptibility
to the fluoroquinolone antibiotics and azithromycin has been reported from some regions
(3).
CDC. Sexually transmitted disease surveillance 2000. Atlanta, GA: US Department of
Health and Human Services, Public Health Service, CDC, 2001.
Fox KK, del Rio C, Holmes KK, et al. Gonorrhea in the HIV era: a reversal in trends among
men who have sex with men. Am J Public Health 2001;91:1--5.
During 2000, a total of 293 cases of Haemophilus
influenzae (Hi) invasive disease among children aged <5 years were reported.* Before a vaccine was introduced
in 1987, approximately 20,000 cases of H.
influenzae type b (Hib) invasive disease
occurred among children annually (1). Because of widespread use of the Hib
vaccine among preschool-aged children, the number of Hib cases has declined sharply. Of
the 293 cases reported during 2000, a total of 227 (78%) Hi isolates were serotyped, and
55 (24%) of these were type b. Among the 55 cases of Hib invasive disease
reported among children aged <5 years, 23 (42%) were among those aged <6 months, who
had not completed a two- or three-dose primary Hib vaccination. However, 23 (72%) of
the 32 children who were old enough (i.e., aged
>6 months) to have completed a three-dose primary series either had unknown vaccination status (six children) or were
incompletely or not vaccinated (17 children). Data as of August 2001 are provided
to the National Immunization Program Office.
Cochi SL, Broome CV, Hightower AW. Immunization of U.S. children with
Haemophilus influenzae type b polysaccharide vaccine: a cost-effectiveness model of strategy
assessment. JAMA 1985;253:521--9.
Hantavirus Pulmonary Syndrome
During 2000, a total of 41 probable cases of hantavirus pulmonary syndrome
(HPS) were reported from 10 states. Of the 34 cases laboratory confirmed by CDC,
seven (21%) were fatal. Since 1993, a total of 256 cases from 30 states have been
confirmed. An additional 32 cases were identified retrospectively back to 1959. Cases of HPS
have now been recognized in countries throughout the Western Hemisphere. Reports
of confirmed cases in patients with mild disease that does not meet the clinical criteria
for HPS are increasing (1). Treatment is available only for the symptoms of HPS, as
a 19931994 open-label trial of the antiviral drug ribavirin did not suggest a benefit
(2). Although most HPS in the United States is caused by Sin Nombre virus and its
variants (i.e., New York and Monongahela), some cases have been associated with
other hantaviruses, including Bayou and Black Creek Canal. Virus is shed in rodent
urine, feces, and saliva and is primarily transmitted through inhalation. Since the initial
recognition of HPS in 1993, researchers continue to investigate the probable
relationship between environmental conditions and reports of HPS cases
(3,4).
Kitsutani PI, Denton RW, Fritz CL, et al. Acute Sin Nombre hantavirus infection
without pulmonary syndrome, United States. Emerg Infect Dis 1999;5:701--5. Available at
<http://www.cdc.gov/ncidod/eid/vol5no5/kitsutani.htm>.
Chapman LE, Mertz GJ, Peters CJ, et al. Intravenous ribavirin for hantavirus
pulmonary syndrome: safety and tolerance during 1 year of open-label experience. Antivir Ther
1999;4:211-9. Abstract available at <http://www.intmedpress.com/journals_avt_abst404_3.cfm>.
Glass GE, Cheek JE, Patz JA, et al. Using remotely sensed data to identify areas at risk
for hantavirus pulmonary syndrome. Emerg Infect Dis 2000;6:238--47. Available at
<http://www.cdc.gov/ncidod/eid/vol6no3/glass.htm>.
____________________
* National Immunization Program data based on date of onset, not
MMWR reporting week.
Hemolytic Uremic Syndrome, Postdiarrheal
During 2000, the fifth year of national reporting, 24 states reported 249 cases
of postdiarrheal hemolytic uremic syndrome (HUS). The median age of patients was
4 years (range: <191), and 56% were female. Illness was seasonal, with 45% of
cases occurring from June through September. By comparison, 26 states reported 181
cases in 1999, and 17 states reported 119 cases in 1998. Though the number of areas
reporting and the number of cases reported increased in 2000, the increased number of
cases is likely a result of improved ascertainment rather than a change in incidence.
Eight states and at least one territory did not list HUS as a notifiable disease in 2000,
contributing to substantial underreporting.
Postdiarrheal HUS is a life-threatening illness characterized by hemolytic
anemia, thrombocytopenia, and renal injury. In the United States, most cases are caused
by infection with Escherichia coli O157:H7; some are caused by other Shiga
toxin-producing E. coli (1,2).
Banatvala N, Griffin PM, Greene KD, et al. The United States prospective hemolytic
uremic syndrome study: microbiologic, serologic, clinical, and epidemiologic findings. J Infect
Dis 2001;183:1063--70.
During 2000, the overall hepatitis A rate (4.9/100,000) reported was the lowest
ever recorded. However, because hepatitis A rates tend to vary from year to year and
from region to region, determining whether this low rate was caused by routine
immunization or natural variability in infection rates is not possible. Monitoring hepatitis A
incidence to determine if these low rates are sustained over time is critical to assessing
the impact of routine vaccination.
Routine childhood hepatitis A vaccination is recommended in the 11 states
where the average annual hepatitis A rate during 1987--1997 was
>20 cases/100,000 (i.e.,
approximately twice the national average)
(1). Routine childhood vaccination should be considered in the six states where the average rate during
1987--1997 was
approximately 10--20/100,000.
During 2000, a total of 8,036 acute hepatitis B cases were reported, representing
a >60% decrease since 1990 (21,102 cases). Surveillance data are being used to
monitor the impact of the national strategy for eliminating hepatitis B virus (HBV)
infection. Healthy People 2010 objectives call for a 75%--90% reduction in the national
incidence of hepatitis B among adults (baseline: 15--24 cases/100,000), a 99% reduction
among children aged 2--18 years (baseline: 945 cases/year), and a 75% reduction in the
number of perinatal HBV infections (baseline: 1,682 infections/year)
(1).
Reported hepatitis B cases can be used to monitor the occurrence of disease
among adults. However, because most infections among infants and young children are
asymptomatic, reported cases underestimate the incidence of disease in these
age groups. Thus, data from other sources (e.g., serosurveys) are needed to
monitor progress toward eliminating HBV transmission among younger age groups.
US Department of Health and Human Services. Healthy People 2010, vols I and II. 2nd
ed. Washington, DC: US Government Printing Office, November 2000.
Hepatitis C; Non-A, Non-B
Cases of hepatitis C reported to CDC are considered unreliable because a) no
serologic marker for acute infection exists and b) most health departments do not have
the resources to determine if a positive laboratory report for hepatitis C virus (HCV)
infection represents acute infection, chronic infection, repeated testing of a person
previously reported, or a false-positive result
(1). Historically, the most reliable
national estimates of acute disease incidence have come from sentinel surveillance. After
adjusting for underreporting and asymptomatic infections, the annual number of
new infections has decreased >80% since 1989 to 35,000 cases in 1999 (CDC,
unpublished data, 2000). Because surveillance for acute hepatitis C can be used to evaluate
the effectiveness of prevention efforts and identify missed opportunities for
prevention, efforts are underway to help states establish and improve surveillance.
During 2000, a total of 21,704 cases of HIV infection (in the absence of AIDS
diagnosis) in persons aged >13 years were reported. The number of reported cases of
HIV infection is affected by epidemic trends as well as other factors (e.g., testing rates
among populations at risk or when states initiated HIV case reporting). Before 1991,
surveillance for HIV infection was not standardized, and reporting was primarily passive.
CDC has since helped states conduct active surveillance for HIV infection using
standardized report forms and software.
In December 1999, CDC published a revised HIV case definition (effective
January 2000) for adults and children aged
>18 months that includes laboratory criteria
requiring positive HIV antibody test results or reports of a detectable quantity of HIV
nucleic acid or plasma HIV RNA (1). As states have begun implementing
laboratory-initiated reporting of viral load tests, they have identified additional HIV and AIDS cases.
HIV infection data should be interpreted with caution because not all infected
persons have been tested and not all anonymous tests have been reported
(2). Many factors influence testing patterns, including the extent that testing is targeted or
routinely offered to specific groups and the availability of and access to medical care
and testing services.
To provide better data for HIV prevention, CDC and CSTE recommend that
national surveillance include both HIV infection and AIDS
(1,3). An integrated national HIV/AIDS surveillance system would provide information regarding persons in whom HIV
infection has been newly diagnosed, those with severe HIV disease (i.e., AIDS), and
those dying of HIV disease.
Council of State and Territorial Epidemiologists. CSTE position statement ID-4: National
HIV surveillance---addition to the National Public Health Surveillance System. Atlanta, GA:
Council of State and Territorial Epidemiologists, 1997.
____________________
* For information on AIDS, see page ix.
HIV Infection, Pediatric
As of December 31, 2000, all states and U.S. territories reported AIDS in
children aged <13 years, and 34 states and two territories also conducted surveillance for
HIV infection among children. During 2000, a total of 224 children whose HIV infection
had not progressed to AIDS and 196 children who had AIDS were reported. Data for
2000 indicated continued declines in perinatally acquired AIDS, reflecting declines
in perinatal HIV transmission (1). The increasing use of zidovudine (ZDV) by mothers
and newborns was temporally associated with this decline, demonstrating success in
nationwide efforts to implement guidelines for routine, voluntary prenatal HIV
testing (2) and the use of ZDV to reduce perinatal HIV transmission
(3).
Beginning January 1, 2000, the surveillance case definition for HIV infection
was revised to reflect advances in laboratory HIV virologic tests and to incorporate the
reporting criteria for HIV infection and AIDS into one case definition for adults
and children (4). For children aged
>18 months, the definition includes laboratory
criteria requiring positive HIV antibody test results or reports of a detectable quantity of
HIV nucleic acid or plasma HIV RNA (4). For children aged <18 months, the reporting
criteria permit diagnosis of HIV infection during the first month of life. Children aged
<18 months born to an HIV-infected mother are categorized as having perinatal
exposure to HIV infection if they do not meet the criteria for either "HIV infection" or
"not infected with HIV" (4,5).
During 2000, approximately 17,730 cases of Lyme disease were reported, most
from the northeastern and north-central United States. CDC promotes
community-based Lyme disease prevention using strategies aimed at reducing vector tick densities,
preventing human exposure to infected vector ticks, and vaccinating persons aged
15--70 years when appropriate (1). CDC has funded new community-based
prevention projects in Connecticut, Massachusetts, New Jersey, and New York.
During 2000, a total of 1,560 malaria cases were reported in the United States.
Most cases were imported, with approximately half occurring among U.S. residents
traveling to malarious areas and half occurring among foreign residents immigrating to
or visiting the United States (1). Although the number of reported cases was similar
to 1999 (1,666) (2), the annual number of cases has increased during the past 15
years. This increase was likely caused by increases in both international travel
(3) and
immigration (4), as well as the spread and intensification of antimalarial drug
resistance globally (5).
International Trade Administration, Tourism Industries. US resident travel to overseas
countries historical visitation outbound, 1988--1998 (one or more nights). Washington, DC: US
Department of Commerce, International Trade Administration, Tourism Industries. Available at
<http://www.tinet.ita.doc.gov/view/f-1998-11-001/index.html>.
US Census Bureau. Current population reports. Series P23-205. Population profile of the
United States: 1999. Washington, DC: US Government Printing Office, 2001. Available at
<http://www.census.gov/prod/2001pubs/p23-205.pdf>.
Barat LM, Bloland PB. Drug resistance among malaria and other parasites. Infect Dis
Clin North Am 1997;11:969--87.
Measles
During 2000, a total of 86 confirmed measles cases were reported. Thirty states
and the District of Columbia did not report any confirmed cases. Thirty-seven
case-patients were aged <5 years, 17 were aged 5--19 years, and 32 were aged
>20 years. Ten outbreaks (range: 3--9 cases) were reported. Of the 86 cases reported, 26 were
imported from outside the United States, and 19 cases were epidemiologically linked to
imported cases. Nine additional cases had virologic evidence of importation (i.e., genotypic
analysis of measles viruses indicated no evidence of an endemic strain). The remaining
32 cases were classified as unknown source cases because no link to importation
was detected.
Meningococcal Disease
Rates of meningococcal disease have been relatively stable in the United States.
A total of 2,256 cases were reported in 2000, of which 1,808 were confirmed, 111
probable, seven suspect, and 330 of unknown case status. Serogroup information was
reported for 32% of cases, and serogroup Y accounted for 31% of those reported.
Most other cases were caused by serogroup C (30%) or serogroup B (28%). Although rates
of meningococcal disease are usually highest among children aged <1 year, 55% of
cases in 2000 occurred among persons aged
>18 years.
Using the technology applied to the development of
Haemophilus influenzae type b (Hib) conjugate vaccines, several companies are in the final stages of developing
and testing meningococcal conjugate vaccines with various serogroup-specific
formulas and in combination with other antigens for licensure in the United States
(1). Three serogroup C meningococcal conjugate vaccines were licensed and integrated into
routine childhood immunization in the United Kingdom last year; early results
confirm >90% efficacy in toddlers and teenagers
(2).
Rosenstein NE, Perkins BA, Stephens DA, Popovic T, Hughes JM. Meningococcal disease.
N Engl J Med 2000;344:1378--88.
Ramsey ME, Andrews N, Kaczmarski EB, Miller E. Efficacy of meningococcal serogroup
C conjugate vaccine in teenagers and toddlers in England. Lancet 2000;357:195-6.
Mumps
Because of the recommendation of two doses of MMR and its high coverage rate
in the United States, mumps is at record low levels. During the 1990s, mumps cases
declined substantially, from 5,292 reported cases in 1990 to 338 reported cases in
2000, meeting the Healthy People 2000 objective of <500 cases per year
(1).
During 2000, a total of 7,867 cases of pertussis were reported. Of these cases,
24% occurred among children too young to have received the recommended three doses
of a pertussis-containing vaccine (i.e., those aged <7 months); 2% among children aged
7--11 months; 10% among preschool-aged children (aged 1--4 years); 8% among
children aged 5--9 years; 36% among persons aged 10--19 years; and 20% among
persons aged >20 years.
Since 1995, the coverage rate with >3 doses of a pertussis-containing vaccine
has been 95% among U.S. children aged 19--35 months
(1). Since 1990, the incidence of pertussis among preschool-aged children has not changed, but the incidence
among adolescents has increased in some states
(2). Because vaccine-induced immunity wanes approximately 5--10 years after pertussis vaccination, adolescents can
become susceptible to disease. Pertussis deaths reported through NNDSS also increased in
the 1990s, predominantly among infants too young to receive three doses (CDC,
unpublished data, 2000).
Since 1980, the number of reported pertussis cases has increased in the
United States (2). The reasons are unknown but could include increased awareness of
pertussis among health-care providers, increased use of more sensitive diagnostic tests,
better reporting of cases to health departments, and an increase in circulating pertussis.
Guris D, Strebel PM, Bardenheier B, et al. Changing epidemiology of pertussis in the
United States: increasing reported incidence among adolescents and adults,
1990--1996. Clin
Infect Dis 1999;28:1230--7.
Plague
During 2000, six cases of human plague were reported from six states
(Arizona, California, Colorado, New Mexico, Utah, and Wyoming), representing <50% of the
average number reported during the past 20 years (i.e., 13.1 cases/year during
1980--1999). None of the six cases were fatal, and all were acquired from
naturally occurring sources. The low number of reported cases is possibly linked to hot
summer and dry winter conditions during the past 2 years in the southwestern states of
Arizona, New Mexico, Colorado, and Utah
(1,2). CDC works cooperatively with state and
local health departments and other federal agencies to improve human and
animal-based plague surveillance programs, including the ability to detect human cases
acquired from natural sources or as a result of bioterrorism. In 2000, these efforts included
CDC participation in a bioterrorism exercise designed to test the abilities of public
health and other agencies to respond to a large pneumonic plague outbreak caused by
an aerosol release of Yersinia pestis in a major U.S. city (Denver)
(3). The exercise highlighted the need for an improved understanding of concerns related to leadership,
decision-making, prioritization and distribution of resources, formulation of
appropriate principles for containment, and development of methods for managing the
crises that would occur in health-care facilities during such an incident.
Parmenter RR, Yadav EP, Parmenter CA, Ettestad P, Gage KL. Incidence of plague
associated with increased winter-spring precipitation in New Mexico. Am J Trop Med Hyg
1999;61:814--21.
Enscore RE, Biggerstaff BJ, Brown TL, et al. Modeling relationships between climate and
the frequency of human plague in the southwestern United States, 1960--1997. Am J Trop
Med Hyg 2001 (in press).
Inglesby TV, Grossman R, O'Toole T. A plague on your city: observations from TOPOFF.
Clin Infect Dis 2000;32:436--45.
Poliomyelitis, Paralytic
In January 2000, the Advisory Committee on Immunization Practices (ACIP)
approved an all inactivated polio vaccine (IPV) schedule for routine childhood
vaccination to eliminate the risk for vaccine-associated paralytic polio (VAPP)
(1). Since implementation of this schedule, no cases of VAPP have been confirmed in the United
States. Continued monitoring with additional observation time is required to confirm
these preliminary findings because of potential delays in reporting.
Under the previous schedule of all oral poliovirus vaccine (OPV), which ended
in 1997, an average eight VAPP cases were reported each year
(2). Under the sequential polio vaccine schedule (two doses of IPV followed by two doses of OPV) used
during 1997--1999, the number of VAPP cases declined steadily from seven cases in 1997
to two cases each in 1998 and 1999 (3).
Strebel PM, Sutter RW, Cochi SL, et al. Epidemiology of poliomyelitis in the United States
one decade after the last reported case of indigenous wild virus-associated disease. Clin Infect
Dis 1992;14:568--79.
Because of the success of the U.S. rubella vaccination program, rubella is at a
record low level, with 176 reported cases in 2000. In recent years, surveillance data have
indicated that rubella has disproportionately affected adults of Hispanic ethnicity, with
an increase in the proportion of cases among Hispanics from 19% in 1991 to 78% in
2000. Rubella now mostly occurs among persons born in countries that do not have
routine rubella vaccination programs or that have only recently implemented such programs.
Danovaro-Holliday MC, LeBaron CW, Allensworth C, et al. A large rubella outbreak with
spread from the workplace to the community. JAMA 2000;284:2733--9.
Reef SE, Plotkin S, Cordero JF, et al. Preparing for elimination of congenital rubella
syndrome (CRS): summary of a workshop on CRS elimination in the United States. Clin Infect
Dis 2000;31:85--95.
During 2000, a total of 32,021
Salmonella isolates were reported through the Public
Health Laboratory Information System (PHLIS) (rate: 11.7/100,000), which was a 24% decrease
from 1990 and a 2% decrease from 1999. Of the 2,449 known
Salmonella serotypes, the two most commonly reported in 2000 were Typhimurium and Enteritidis, accounting for 42% of
isolates. S. Typhimurium and S. Enteritidis have ranked first and second, respectively, in
frequency since 1990, although their rankings reversed during 19941996
(1). According to a 1999 national survey, 49% of
S. Typhimuriumisolates were resistant to more than one
drug, and 28% had a five-drug resistance pattern characteristic of a single phage type,
Definitive Type 104 (2). The number of reported
S. Enteritidis isolates has decreased since the
mid-1990s, possibly because of egg safety regulations and egg industry improvements in
the 1990s (3).
Olsen SJ, Bishop R, Brenner FW, et al. The changing epidemiology of
Salmonella: trends in serotypes isolated from humans in the United States, 19871997. J Clin Microbiol
2001;183:753--61.
During 2000, a total of 12,732 isolates of shigellosis were reported through
PHLIS, with Shigella sonnei infections continuing to account for most cases in the
United States. Prolonged, communitywide outbreaks of
S. sonnei infections transmitted in child care centers and other settings where maintenance of good hygienic
conditions requires special care account for much of the problem
(1). S. sonnei also can be transmitted through contaminated foods and water used for drinking or recreational
purposes (2,3), and recent evidence has indicated that infections are increasing among
men who have sex with men (4).
Mohle-Boetani JC, Stapleton M, Finger R, et al. Communitywide shigellosis: control of
an outbreak and risk factors in child day-care centers. Am J Public Health
1995;85:812--6.
Streptococcal Disease, Invasive, Group A
(including streptococcal toxic-shock syndrome)
During 2000, a total of 915 cases of invasive group A streptococcal (GAS)
disease were reported from nine states (California, Colorado, Connecticut, Georgia,
Maryland, Minnesota, New York, Oregon, and Tennessee) through the Active Bacterial Core
Surveillance (ABCs) project under CDC's Emerging Infections Program
(1). Based on these 915 cases, CDC estimates that approximately 8,800 cases of invasive GAS disease
(rate: 3.2/100,000) and 1,000 deaths occurred nationally during 2000.
Disease incidence was highest among children aged 1 year (5.8/100,000) and
adults aged >65 years (8.5/100,000). Streptococcal toxic-shock syndrome and
necrotizing fasciitis accounted for approximately 4.0% and 6.0% of invasive cases,
respectively. The overall case-fatality rate among patients with invasive GAS disease was
11.5%. CDC identifies invasive GAS isolates based on sequences of the variable portion of
the M-protein gene (i.e., emm typing). Although approximately 50% of the GAS
isolates emm-typed for 2000 were one of the five known
emm types (i.e., 1, 3, 12, 28, and 82),
emm-type distribution shows considerable geographic diversity.
During 2000, CDC collected information on invasive pneumococcal disease,
including drug-resistant Streptococcus
pneumoniae, in nine states (California, Colorado,
Connecticut, Georgia, Maryland, Minnesota, New York, Oregon, and Tennessee)
(1). Of the
3,607 S. pneumoniae isolates collected, 9.8% exhibited intermediate resistance to
penicillin (minimum inhibitory concentration [MIC] of 0.1--1 µg/mL), and 17.1% were
fully resistant (MIC >2 µg/mL)
(2). For cefotaxime, 9.8% of all isolates had intermediate
resistance and 7.5% were resistant. For erythromycin, 21.3% were resistant.
Approximately one-fifth (18.9%) of isolates were not susceptible to the three classes
of drugs commonly used to treat pneumococcal infections.
In February 2000, the U.S. Food and Drug Administration (FDA) licensed a
pneumococcal conjugate vaccine for use in infants and young children. In October 2000,
ACIP issued recommendations for use of the vaccine in children aged <5 years
(3). Of isolates from children aged <5 years reported during 2000, a total of 67.6% of all strains
(n = 887) and 77.7% of strains not susceptible to penicillin (n = 328) were serotypes
included in this 7-valent vaccine.
Schuchat A, Hilger T, Zell E, et al. Active Bacterial Core Surveillance of the Emerging
Infections Program Network. Emerg Infect Dis 2001;7:1--8.
National Committee for Clinical Laboratory Standards. Performance standards for
antimicrobial susceptibility testing: M100S10 Wayne, PA: National Committee for Clinical
Laboratory Standards, 2000.
During 2000, a total of 529 cases of congenital syphilis were reported (rate:
12.6/100,000 live births). Like primary and secondary syphilis, the rate of congenital
syphilis has declined sharply in recent years, from a peak of 107.3/100,000 in 1991
(1). Congenital syphilis persists in the United States because a substantial number of women
do not receive syphilis serologic testing until late in their pregnancy or not at all. This
lack of screening is often related to absent or late prenatal care
(2).
CDC. Sexually transmitted disease surveillance 2000. Atlanta, GA: US Department of
Health and Human Services, Public Health Service, CDC, 2001.
During 2000, a total of 5,979 primary and secondary syphilis cases were
reported. During 19902000, the primary and secondary syphilis rate declined 89%, from
20.3/100,000 to 2.2/100,000. The 2000 rate was the lowest since reporting began in 1941
(1). Although syphilis has declined in all regions of the United States and in all
racial/ethnic groups, rates remain disproportionately high in the South and among
non-Hispanic blacks, and focal outbreaks continue to occur (including recent outbreaks among
men who have sex with men [2,3]).
CDC. Sexually transmitted disease surveillance 2000. Atlanta, GA: US Department of
Health and Human Services, Public Health Service, CDC, 2001.
During 2000, a total of 35 cases of tetanus were reported from 19 states; no cases
of neonatal tetanus were reported. Four (11%) cases were among persons aged <25
years, 19 (54%) among persons aged 25--59 years, and 12 (34%) among persons aged
>59 years. The percentage of cases among persons aged 25--59 years has
increased
during the 1990s; previously, most cases were among persons aged >59 years
(1). One case occurred in a child aged 12 years who had never been vaccinated against
tetanus because of the parents' objection to vaccination. Six (15%) cases were fatal.
During 2000, a total of 135 cases of toxic-shock syndrome (TSS) were reported.
Of these cases, three occurred in men. Three cases were fatal, with two of the
deaths menstruation-related. The limited number of reported cases in recent years is
likely caused by decreased reporting and not a true decline in incidence of disease
(1). Continued surveillance will be important to monitor the reemergence of TSS that
could occur among women using barrier contraceptive devices and to define better the
risk factors for nonmenstrual TSS.
Hajjeh RA, Reingold R, Weil A, Shutt K, Schuchat A, Perkins BA. Toxic shock syndrome in
the United States: surveillance update, 1979--1996. Emerg Infec Dis
1999;5:807--10.
Trichinosis
During 2000, a total of 16 cases of trichinosis were reported from eight states
(Alaska, Florida, Hawaii, Illinois, Maryland, Michigan, Ohio, and Wisconsin). Case-patients
included seven men and three women whose ages ranged from 34 to 65 years.
Bear meat was the cause of the five cases reported from Alaska, and pork was identified
as the source of cases from Illinois (n = 2) and Hawaii (n = 1).
Tuberculosis
During 2000, a total of 16,377 tuberculosis (TB) cases (rate: 6.0/100,000) were
reported (1), representing a 7% decrease from 1999 and a 39% decrease from
1992, when cases peaked during the resurgence of TB in the United States. During
1992--2000, TB cases among U.S.-born persons decreased 55%, whereas cases among
foreign-born persons increased 4% (1).
Since 1993, when states began reporting initial drug susceptibility results to
CDC, the number of multidrug-resistant TB (MDR TB) cases in persons with no
previous history of TB decreased from approximately 400 (2.5%) to approximately 120
(1.1%) (1). These declines could be the result of stronger control efforts after the
resurgence of TB and the emergence of MDR TB. The relatively stable number of cases
reported among foreign-born persons indicates that most cases could be caused by
infection with Mycobacterium tuberculosis in the person's country of origin. CDC has
collaborated with state and local health departments to publish recommendations for
enhancing TB control efforts among foreign-born persons and is working to expand
current efforts based on these recommendations
(2,3).
CDC. Reported tuberculosis in the United States, 2000. Atlanta, GA: US Department of
Health and Human Services, CDC, August 2001. Available at <http://www.cdc.gov/nchstp/tb/>.
During 2000, a total of 142 cases of tularemia were reported. The incidence of
tularemia in the United States has declined substantially, from nearly 0.36/100,000 in
1955 to 0.06/100,000 in 2000 (1). Although tularemia was removed as a nationally
notifiable
disease in 1994, it was reinstated effective January 1, 2000, primarily because of
the potential for use of Francisella
tularensis as a bioterrorism agent (2). Guidelines
for public health and medical response to the use of
F. tularensis as a biological weapon are available
(3). During the summer of 2000, lawn mowing or brush-cutting was
identified as a risk factor in an outbreak of pneumonic tularemia on Martha's
Vineyard, Massachusetts (4).
Cross JT, Penn RL. Francisella
tularensis (tularemia). In: Mandell GL, Bennett JE, Dolin R,
eds. Mandell, Douglas, and Bennett's principles and practice of infectious diseases.
Philadelphia, PA: Churchill Livingstone, 2000:2393--402.
Dennis DT, Inglesby TV, Henderson DA, et al. Tularemia as a biological weapon: medical
and public health management. JAMA 2001;285:2763--73.
Feldman KA, Lathrop SL, Enscore RE, et al. Lawnmower tularemia---Martha's
Vineyard, Massachusetts, 2000. In: Program and abstract of the 50th Annual Epidemic Intelligence
Service (EIS) Conference. Atlanta, GA: CDC, 2001:29.
Typhoid Fever
During 2000, a total of 377 cases of typhoid fever were reported. Despite the
availability of two effective vaccines, 300--400 cases are reported each year.
Approximately 80% of these cases occur in persons who report international travel during the
6 weeks before illness. Persons traveling to and from their country of origin can be
at high risk (1). In many areas of the world,
Salmonella Typhi strains have acquired
resistance to multiple antimicrobial agents, including ampicillin, chloramphenicol,
and trimethoprim-sulfamethoxazole (1).
Ackers ML, Puhr ND, Tauxe RV, Mintz ED. Laboratory-based surveillance
of Salmonella serotype Typhi infections in the United States: antimicrobial resistance on the rise. JAMA
2000;283:2668--73.
Varicella
In 1995, varicella vaccine was licensed in the United States, and in 1996, the
vaccine became available for use in the public sector
(1). Although varicella is not a nationally notifiable disease, since 1990, six states (Massachusetts, Michigan, Missouri,
Rhode Island, Texas, and West Virginia) have maintained adequate reporting levels by
reporting varicella disease burden constituting
>5% of their birth cohort.* In these states,
a 67% reduction in disease incidence has occurred
between the immediate prevaccination years (1993--1995) and the most recent year for which data are available (2000).
This decrease is associated with rapidly increasing vaccination coverage; among
children aged 19--35 months, vaccination coverage reached 63% during July
1999--June
2000. The marked decline in reported cases from passive reporting to CDC was
consistent with data from active varicella surveillance sites (CDC, unpublished data, 2000).
Ongoing surveillance will be important to monitor the impact of the varicella
vaccination program. Although deaths from varicella became nationally notifiable
beginning January 1, 1999, reporting remains incomplete
(2). CDC encourages all states to review death certificates and vital statistics to identify and report deaths from
varicella among children, adolescents, and adults.
Council of State and Territorial Epidemiologists. CSTE position statement ID-10: Inclusion
of varicella-related deaths in the National Public Health Surveillance System. Atlanta, GA:
Council of State and Territorial Epidemiologists, 1998.
____________________
*Data obtained from the National Immunization Program.PART 1
Summaries
of Notifiable Diseases
in the United States, 2000
PART 1
Summaries of Notifiable Diseases in the United States, 2000
PART 2
Graphs and Maps
for Selected
Notifiable Diseases
in the United States
PART 3
Historical Summaries of Notifiable Diseases in the United States, 1969�2000
Selected Reading
General
Bayer R, Fairchild AL. Public health: surveillance and privacy. Science 2000;290:1898--9.
Chin JE, ed. Control of communicable diseases manual. 17th ed. Washington, DC:
American Public Health Association, 2000.
Freimuth V, Linnan HW, Potter P. Communicating the threat of emerging infections to
the public. Emerg Infect Dis 2000;6:337--47.
Lin SS, Kelsey JL. Use of race and ethnicity in epidemiologic research:
concepts, methodological issues, and suggestions for research. Epidemiol Rev 2000;22:187--202.
Pinner RW, Jernigan DB, Sutliff SM. Electronic laboratory-based reporting for public
health. Military Medicine 2000;165(suppl 2):20--4.
Pinner RW, Koo D, Berkelman RL. Surveillance of infectious diseases. In: Lederberg
J, Alexander M, Bloom RB, eds. Encyclopedia of microbiology. 2nd ed. San Diego, CA:
Academic Press, 2000;4:506--25.
Teutsch SM, Churchill RE, eds. Principles and practice of public health surveillance. 2nd
ed. New York, NY: Oxford University Press, 2000.
CDC. Sexually transmitted disease surveillance 1998. Atlanta, GA: US Department of Health
and Human Services, Public Health Service, CDC, 1999.
Effler P, ChingLee M, Bogard A, Ieong MC, Nekomoto T, Jernigan D. Statewide system
of electronic notifiable disease reporting from clinical laboratories: comparing
automated reporting with conventional methods. JAMA 1999;282:1845--50. Abstract available at
<http://jama.amaassn.org/issues/v282n19/abs/joc90534.html>.
Roush S, Birkhead G, Koo D, Cobb A, Fleming D. Mandatory reporting of diseases
and conditions by health care professionals and laboratories. JAMA 1999;282:164--70. Available
at <http://jama.amaassn.org/issues/v282n2/abs/joc90413.html>.
Niskar AS, Koo D. Differences in notifiable infectious disease morbidity among adult
women---United States, 1992--1994. J Womens Health 1998;7:451--8.
Koo D, Wetterhall S. History and current status of the National Notifiable Diseases
Surveillance System. J Public Health Manag Pract 1996;2:4--10.
CDC. Manual of procedures for the reporting of nationally notifiable diseases to CDC.
Atlanta, GA: US Department of Health and Human Services, Public Health Service, CDC, 1995.
Martin SM, Bean NH. Data management issues for emerging diseases and new tools
for managing surveillance and laboratory data. Emerg Infect Dis 1995;1:124--8. Available at
<http://www.cdc.gov/ncidod/eid/vol1no4/martin2.htm#top>.
Thacker SB, Stroup DF. Future directions for comprehensive public health surveillance
and health information systems in the United States. Am J Epidemiol 1994;140:383--97.
CDC. Proceedings of the 1992 International Symposium on Public Health Surveillance.
MMWR 1992;41(suppl).
Karon JM, Fleming PL, Steketee RW, De Cock KM. HIV in the United States at the turn of
the century: an epidemic in transition. Am J Public Health 2001;91:1060--8.
Angulo FJ, Getz J, Taylor JP, et al. A large outbreak of botulism: the hazardous baked potato.
J Infect Dis 1998;178:172--7.
CDC. Botulism in the United States, 1899--1996: handbook for epidemiologists, clinicians,
and laboratory workers. Atlanta, GA: US Department of Health and Human Services, Public
Health Service, CDC, 1998. Available at <http://www.cdc.gov/ncidod/dbmd/diseaseinfo/botulism.pdf>.
Shapiro RL, Hatheway C, Becher J, Swerdlow D. Botulism surveillance and
emergency response: a public health strategy for a global challenge. JAMA 1997;278:433--5.
Brucellosis
Yagupsky P. Detection of brucellae in blood cultures. J Clin Microbiol 1999;37:3437--42.
Chomel BB, DeBess EE, Mangiamele DM, et al. Changing trends in the epidemiology of
human brucellosis in California from 1973 to 1992: a shift toward foodborne transmission. J Infect
Dis 1994;170:1216--23.
Taylor JP, Perdue JN. The changing epidemiology of human brucellosis in Texas,
1977--1986. Am J Epidemiol 1989;130:160--5.
Chancroid
Mertz KJ, Trees D, Levine WC, et al. Etiology of genital ulcers and prevalence of
human immunodeficiency virus coinfection in 10 US cities. The Genital Ulcer Disease
Surveillance Group. J Infect Dis 1998;178:1795--8.
Mertz KJ, Weiss JB, Webb RM, et al. An investigation of genital ulcers in Jackson,
Mississippi, with use of a multiplex polymerase chain reaction assay: high prevalence of chancroid
and human immunodeficiency virus infection. J Infect Dis 1998;178:1060--6.
DiCarlo RP, Armentor BS, Martin DH. Chancroid epidemiology in New Orleans men. J Infect
Dis 1995;172:446--52.
CDC. Sexually transmitted disease surveillance 2000 supplement: Chlamydia
Prevalence Monitoring Project. Atlanta, GA: US Department of Health and Human Services,
CDC, November 2001. Available at <http://www.cdc.gov/std/chlamydia2001>.
Gaydos CA, Howell MR, Pare B, et al. Chlamydia
trachomatis infections in female
military recruits. N Engl J Med 1998;339:739--44.
Mertz KJ, McQuillan GM, Levine WC, et al. A pilot study of chlamydial infection in a
national household survey. Sex Transm Dis 1998;25:225--8.
Cholera
Mintz ED, Tauxe RV, Levine MM. The global resurgence of cholera. In: Noah ND, O'Mahony
M, eds. Communicable disease epidemiology and control. Chichester, England: John Wiley
& Sons, 1998:63--104.
Mahon BE, Mintz ED, Greene KD, Wells JG, Tauxe RV. Reported cholera in the United
States, 1992--1994: a reflection of global changes in cholera epidemiology. JAMA 1996;276:307--12.
Wachsmuth IK, Blake PA, Olsvik O, eds. Vibrio
cholerae and cholera: molecular to
global perspectives. Washington, DC: American Society for Microbiology, 1994.
World Health Organization. Guidelines for cholera control. Geneva, Switzerland: World
Health Organization, 1993.
Cyclosporiasis
Lopez AS, Dodson DR, Arrowood MJ, et al. Outbreak of cyclosporiasis associated with basil
in Missouri in 1999. Clin Infect Dis 2001;32:1010--7.
Herwaldt BL. Cyclospora cayetanensis: a review, focusing on the outbreaks of cyclosporiasis
in the 1990s. Clin Infect Dis 2000;31:1040--57.
Herwaldt BL, Beach MJ. The return of
Cyclospora in 1997: another outbreak of cyclosporiasis
in North America associated with imported raspberries. Cyclospora Working Group. Ann
Intern Med 1999;130:210--20.
Herwaldt BL, Ackers ML. An outbreak in 1996 of cyclosporiasis associated with
imported raspberries. The Cyclospora Working Group. N Engl J Med 1997;336:1548--56.
Diphtheria
Dittmann S, Wharton M, Vitek C, et al. Successful control of epidemic diphtheria in the states
of the former Union of Soviet Socialist Republics: lessons learned. J Infect Dis 2000;181
(suppl 1):S10--S22.
Bisgard KM, Hardy IR, Popovic T, et al. Respiratory diphtheria in the United States,
1980 through 1995. Am J Public Health 1998;88:787--91.
Galazka AM, Robertson SE. Diphtheria: changing patterns in the developing world and
the industrialized world. European J Epidemiol 1995;11:107--17.
Ehrlichiosis (Human Granulocytic and Human Monocytic)
Belongia EA, Reed KD, Mitchell PD, et al. Tickborne infections as a cause of nonspecific
febrile illness in Wisconsin. Clin Infect Dis 2001;32:1434--9.
IJdo JW, Meek JI, Cartter ML, et al. The emergence of another tickborne infection in the
12-town area around Lyme, Connecticut: human granulocytic ehrlichiosis. J Infect Dis
2000;181:1388--93.
Childs JE, Sumner JW, Nicholson WL, Massung RF, Standaert SM, Paddock CD. Outcome
of diagnostic tests using samples from patients with culture-proven human
monocytic ehrlichiosis: implications for surveillance. J Clin Microbiol 1999;37:2997--3000.
Banatvala N, Griffin PM, Greene KD, et al. The United States National Prospective
Hemolytic Uremic Syndrome Study: microbiologic, serologic, clinical, and epidemiologic findings. J
Infect Dis 2001;183:1063--70.
Mahon BE, Griffin PM, Mead PS, Tauxe RV. Hemolytic uremic syndrome surveillance to
monitor trends in infection with Escherichia
coli O157:H7 and other Shiga toxin-producing
E. coli [Letter]. Emerg Infect Dis 1997;3:409--12. Available in the Internet at
<http://www.cdc.gov/ncidod/eid/vol3no3/mahon.htm>.
Siegler RL, Pavia AT, Christofferson RD, Milligan MK. A 20year populationbased study
of postdiarrheal hemolytic uremic syndrome in Utah. Pediatrics 1994;94:35--40.
Gonorrhea
CDC. Sexually transmitted diseases surveillance 2000 supplement: Gonococcal
Isolate Surveillance Project (GISP) annual report---2000. Atlanta, GA: US Department of Health
and Human Services, CDC, October 2001.
Fox KK, del Rio C, Holmes KK, et al. Gonorrhea in the HIV era: a reversal in trends among
men who have sex with men. Am J Public Health 2001;91:959--64.
Galil K, Singleton R, Levine OS, et al. Reemergence of invasive
Haemophilus influenzae type b disease in a wellvaccinated population in remote Alaska. J Infect Dis 1999;179:101--6.
Bisgard KM, Kao A, Leake J, Strebel PM, Perkins BA, Wharton M.
Haemophilus influenzae invasive disease in the United States, 1994--1995: near disappearance of a
vaccine-preventable childhood disease. Emerg Infect Dis 1998;2:229--37. Available at
<http://www.cdc.gov/ncidod/eid/vol4no2/bisgard.htm>.
Glass G, Cheek J, Patz J, et al. Using remotely sensed data to identify areas at risk
for hantavirus pulmonary syndrome. Emerg Infect Dis 2000;6:238--47. Available at
<http://www.cdc.gov/ncidod/eid/vol6no3/glass.htm>.
Chapman LE, Mertz GJ, Peters CJ, et al. Intravenous ribavirin for hantavirus
pulmonary syndrome: safety and tolerance during 1 year of open-label
experience. Antiviral Therapy 1999;4:211--9. Abstract available at <http://www.intmedpress.com/journals_avt_abst404_3.cfm>.
Kitsutani PI, Denton RW, Fritz CL, et al. Acute Sin Nombre hantavirus infection
without pulmonary syndrome, United States. Emerg Infect Dis 1999;5:701--5. Available at
<http://www.cdc.gov/ncidod/eid/vol5no5/kitsutani.htm>.
Bell BP, Shapiro CN, Alter MJ, et al. The diverse patterns of hepatitis A epidemiology in
the United States---implications for vaccination strategies. J Infect Dis 1998;178:1579--84.
Lemon SM, Shapiro CN. The value of immunization against hepatitis A. Infect Agents
Dis 1994;3:38--49.
Shapiro CN, Coleman PJ, McQuillan GM, Alter MJ, Margolis HS. Epidemiology of hepatitis
A: seroepidemiology and risk groups in the USA. Vaccine 1992;10(suppl 1):S59--S62.
Hepatitis B
McQuillan GM, Coleman PJ, KruszonMoran D, Moyer LA, Lambert SB, Margolis
HS. Prevalence of hepatitis B virus infection in the United States: The National Health and
Nutrition Examination Surveys, 1976 through 1994. Am J Pub Health 1999;89:14--8.
Coleman PJ, McQuillan GM, Moyer LA, Lambert SB, Margolis HS. Incidence of hepatitis B
virus infection in the United States, 1976--1994: estimates from the National Health and
Nutrition Examination Surveys. J Infect Dis 1998;178:954--9.
Margolis HS, Alter MJ, Hadler SC. Hepatitis B: evolving epidemiology and implications
for control [Review]. Semin Liver Dis 1991;11:84--92.
Hepatitis C; Non-A, Non-B
Armstrong GA, Alter MJ, McQuillan GM, Margolis HS. The past incidence of hepatitis C
virus infection: implications for the future burden of chronic liver disease in the United
States. Hepatology 2000;31:777--82.
Alter MJ, Kruszon-Moran D, Nainan OV, et al. The prevalence of hepatitis C virus infection
in the United States, 1988 through 1994. N Engl J Med 1999;341:556--62.
Hayes EB, Maupin GO, Mount GA, Piesman J. Assessing the prevention effectiveness of
local Lyme disease control. J Public Health Manag Pract 1999;5:84--92.
Malaria
Lobel HO, Kozarsky PE. Update on prevention of malaria for travelers. JAMA 1997;278:1767--71.
Zucker JR. Changing patterns of autochthonous malaria transmission in the United States:
a review of recent outbreaks. Emerg Infect Dis 1996;2:37--43. Available at
<http://www.cdc.gov/ncidod/eid/vol2no1/zuckerei.htm>.
Zucker JR, Campbell CC. Malaria: principles of prevention and treatment [Review]. Infect
Dis Clin North Am 1993;7:547--67.
Diermayer M, Hedberg K, Hoesly FC, et al. Epidemic serogroup B meningococcal disease
in Oregon: the evolving epidemiology of the ET5 strain. JAMA 1999;281:1493--7. Available
at <http://jama.amaassn.org/issues/v281n16/rfull/joc81215.html>.
Rosenstein NE, Perkins BA, Stephens DS, et al. The changing epidemiology of
meningococcal disease in the United States, 1992--1996. J Infect Dis 1999;180:1894--901.
Briss PA, Fehrs LJ, Parker RA, et al. Sustained transmission of mumps in a highly
vaccinated population: assessment of primary vaccine failure and waning
vaccine-induced immunity.
J Infect Dis 1994;169:77--82.
Hersh BS, Fine PE, Kent WK, et al. Mumps outbreak in a highly vaccinated population. J
Pediatr 1991;119:187--93.
Bisgard KM, Christie CD, Reising SF, et al. Molecular epidemiology of
Bordetalla pertussis by pulsed-field gel electrophoresis profile: Cincinnati, 1989--1996. J Inf Dis 2001;183:1360--7.
Strebel P, Nordin J, Edwards K, et al. Population-based incidence of pertussis
among adolescents and adults, Minnesota, 1995--1996. J Inf Dis 2001;183:1353--9.
Guris D, Strebel PM, Bardenheier B, et al. Changing epidemiology of pertussis in the
United States: increasing reported incidence among adolescents and adults, 1990--1996. Clin Infect
Dis 1999;28:1230--7.
Inglesby TV, Dennis DT, Henderson DA, et al. Plague as a biological weapon: medical
and public health management. Working Group on Civilian Biodefense [Review]. JAMA
2000;283:2281--90.
Dennis DT, Gage KL, Gratz N, Poland JD, Tikhomirov E. Plague manual:
epidemiology, distribution, surveillance and control. Geneva, Switzerland: World Health Organization, 1999.
Poland JD, Dennis DT. Plague. In: Evans AS, Brachman PS, eds. Bacterial infections of
humans: epidemiology and control. 3rd ed. New York, NY: Plenum Medical Book Company, 1998:545--58.
Prevots DR, Khetsuriani N, Wharton M. Evidence for a decline in the number of
vaccine-associated paralytic poliomyelitis cases in the United States following implementation of
a sequential poliovirus vaccination schedule, 1997--1998. Presented at the 36th annual meeting
of the Infectious Disease Society of America, November 12--15, 1998.
Prevots DR, Sutter RW, Strebel PM, Weibel RE, Cochi SL. Completeness of reporting
for paralytic poliomyelitis, United States, 1980 through 1991. Implications for estimating the risk
of vaccine-associated disease. Arch Pediatr Adolesc Med 1994;148:479--85.
Q Fever
Raoult D, Tissot-Dupont H, Foucault C, et al. Q fever 1985--1998. Clinical and
epidemiologic features of 1,383 infections. Medicine 2000:79:109--23.
Tissot-Dupont H, Torres S, Nezri M, Raoult D. Hyperendemic focus of Q fever related to
sheep and wind. Am J Epi 1999;150:67--74.
Bernard KW, Parham GL, Winkler WG, Helmick CG. Q fever control
measures: recommendations for research facilities using sheep. Infection Control 1982;3:461--5.
Treadwell TA, Holman RC, Clarke MA, Krebs JW, Paddock CD, Childs JE. Rocky
Mountain spotted fever in the United States, 1993--1996. Am J Trop Med Hyg 2000;63:21--6.
Paddock CD, Greer PW, Ferebee TL, et al. Hidden mortality attributable to Rocky
Mountain spotted fever: immunohistochemical detection of fatal, serologically unconfirmed diseases.
J Infect Dis 1999;179:1469--76.
Dalton MJ, Clarke MJ, Holman RC, et al. National surveillance for Rocky Mountain
spotted fever, 1981--1992: epidemiologic summary and evaluation of risk factors for fatal outcome.
Am J Trop Med Hyg 1995;52:405--13.
Danovaro-Holliday MC, LeBaron CW, Allensworth C, et al. A large rubella outbreak with
spread from the workplace to the community. JAMA 2000;284:2733--9.
Reef S, Plotkin S, Cordero J, et al. Preparing for congenital rubella syndrome
elimination: summary of the Workshop on Congenital Rubella Syndrome Elimination in the United
States. Clin Infect Dis 2000;31:85--95.
Salmonellosis
Olsen SJ, Bishop R, Brenner FW, et al. The changing epidemiology
of Salmonella: trends in serotypes isolated from humans in the United States, 1987--1997. J Infect Dis 2001;183:753--61.
Mahon BE, Slusker L, Hutwagner L, et al. Consequences in Georgia of a nationwide outbreak
of Salmonella infections: what you don't know might hurt you. Am J Public Health 1999;89:31--5.
Van Beneden CA, Keene WE, Strang RA, et al. Mutinational outbreak of
Salmonella enterica serotype Newport infections due to contaminated alfalfa sprouts. JAMA 1999;281:158--62.
Glynn MK, Bopp C, Dewitt WK, Dabney P, Moktar M, Angulo FJ. Emergence of
multidrug-resistant Salmonella enterica serotype Typhimurium DT104 infections in the United States.
N Engl J Med 1998;338:1333--8.
Sobel J, Cameron DN, Ismail J, et al. A prolonged outbreak of
Shigella sonnei infections in traditionally observant Jewish communities in North America caused by a molecularly
distinct bacterial subtype. J Infect Dis 1998;177:1405--8.
MohleBoetani JC, Stapleton M, Finger R, et al. Communitywide shigellosis: control of
an outbreak and risk factors in child daycare centers. Am J Public Health 1995;85:812--6.
Streptococcal Disease, Invasive, Group A
CDC. Active Bacterial Core Surveillance (ABCs) report. Emerging Infections Program
Network. Group A streptococcus, 2000 (preliminary). Atlanta, GA: US Department of Health and
Human Services, CDC, 2000. Available at <http://www.cdc.gov/ncidod/dbmd/abcs/survreports/gas00prelim.pdf>.
Laupland KB, Davies HD, Low DE, Schwartz B, Green K, McGeer A. Invasive group
A streptococcal disease in children and association with varicella-zoster virus infection.
Ontario Group A Streptococcal Study Group. Pediatrics 2000;105:E60.
Anonymous. Prevention of invasive group A streptococcal disease among household
contacts of case-patients: is prophylaxis warranted? The Working Group on Prevention of
Invasive Group A Streptococcal Infections. JAMA 1998;279:1206--10.
Robinson KA, Baughman W, Rothrock G, et al. Epidemiology of invasive
Streptococcus pneumoniae infections in the United States, 1995--1998: opportunities for prevention in
the conjugate vaccine era. JAMA 2001;285:1729--35.
Whitney CG, Farley MM, Hadler J, et al. Increasing prevalence of
multidrug-resistant Streptococcus
pneumoniae in the United States. N Engl J Med 2000;343:1917--24.
Southwick KL, Guidry HM, Weldon MM, Mertz KJ, Berman SM, Levine WC. An epidemic
of congenital syphilis in Jefferson County, Texas, 1994--1995: inadequate prenatal syphilis
testing after an outbreak in adults. Am J Public Health 1999;89:557--60.
CDC. Sexually transmitted disease surveillance supplement 2000: syphilis surveillance
report. Atlanta, GA: US Department of Health and Human Services, CDC, December 2001.
Gergen PJ, McQuillan GM, Kiely M, EzzatiRice TM, Sutter RW, Virella G. A
population-based serologic survey of immunity to tetanus in the United States. N Engl J Med 1995;332:761--6.
ToxicShock Syndrome
Hajjeh RA, Reingold R, Weil A, Shutt K, Schuchat A, Perkins BA. Toxic shock syndrome in
the United States: surveillance update, 1979--1996. Emerg Infec Dis 1999;5:807--10. Available
at <http://www.cdc.gov/ncidod/eid/vol5no6/hajjeh.htm>.
Schuchat A, Broome CV. Toxic shock syndrome and tampons. Epidemiol Rev 1991;13:990112.
Gaventa S, Reingold AL, Hightower AW, et al. Active surveillance for toxic shock syndrome
in the United States, 1986. Rev Infect Dis 1989;11(suppl):S28--S34.
Tuberculosis
CDC. Reported tuberculosis in the United States, 2000. Atlanta, GA: US Department of
Health and Human Services, CDC, August 2001. Available at <http://www.cdc.gov/nchstp/tb/>.
Institute of Medicine. Ending neglect: the elimination of tuberculosis in the United
States. Washington, DC: National Academy Press, 2000. Available at
<http://www.nap.edu/books/0309070287/html/>.
Talbot EA, Moore M, McCray E, Binkin NJ. Tuberculosis among foreign-born persons in
the United States, 1993--1998. JAMA 2000;284:2894--900.
Moorhead A, Grunenwald PE, Dietz VJ, Schantz PM. Trichinellosis in the United States,
1991--1996: declining but not gone. Am J Trop Med Hyg 1999;60:66--9.
McAuley JB, Michelson MK, Schantz PM. Trichinosis surveillance, United States, 1987--1990.
In: CDC surveillance summaries, December 1991. MMWR 1991;40(No. SS3):35--42.
Tularemia
Dennis DT, Inglesby TV, Henderson DA, et al. Tularemia as a biological weapon: medical
and public health management. JAMA 2001;285:2763--73.
Typhoid Fever
Ackers ML, Puhr ND, Tauxe RV, Mintz ED. Laboratory-based surveillance
of Salmonella Serotype Typhi infections in the United States: antimicrobial resistance on the rise.
JAMA 2000;283:2668--73.
Mermin JH, Villar R, Carpenter J, et al. A massive epidemic of
multidrugr-esistant typhoid
fever in Tajikistan associated with consumption of municipal water. J Infect Dis 1999;179:1416--22.
Mermin JH, Townes JM, Gerber M, Dolan N, Mintz ED, Tauxe RV. Typhoid fever in the
United States, 1985--1994: changing risks of international travel and increasing
antimicrobial resistance. Arch Intern Med 1998;158:633--8.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of
Health and Human Services.References to non-CDC sites on the Internet are
provided as a service to MMWR readers and do not constitute or imply
endorsement of these organizations or their programs by CDC or the U.S.
Department of Health and Human Services. CDC is not responsible for the content
of pages found at these sites. URL addresses listed in MMWR were current as of
the date of publication.
Disclaimer
All MMWR HTML versions of articles are electronic conversions from ASCII text
into HTML. This conversion may have resulted in character translation or format errors in the HTML version.
Users should not rely on this HTML document, but are referred to the electronic PDF version and/or
the original MMWR paper copy for the official text, figures, and tables.
An original paper copy of this issue can be obtained from the Superintendent of Documents,
U.S. Government Printing Office (GPO), Washington, DC 20402-9371; telephone: (202) 512-1800.
Contact GPO for current prices.
**Questions or messages regarding errors in formatting should be addressed to
mmwrq@cdc.gov.