![]() ![]() | ||||||||||
|
|
![]() |
![]() |
![]() |
![]() |
![]() |
||||
|
![]() |
![]() |
![]() |
Responding to Detection of Aerosolized Bacillus anthracis by Autonomous Detection Systems in the WorkplacePrepared by Patrick J. Meehan, M.D.;1 The material in this report originated in the National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, Office of the Director, Henry Falk, M.D., Director; National Center for Infectious Diseases, James M. Hughes, M.D.; the Division of Bacterial and Mycotic Diseases, Mitchell L. Cohen, M.D., Director; and the Bioterrorism Preparedness and Response Program, Charles A. Schable, M.D., Director; National Institute for Occupational Safety and Health, Office of the Director, John Howard, M.D., Director; and Office for Terrorism Preparedness and Emergency Response, Office of the Director, Joseph M. Henderson, M.P.A., Director. Summary Autonomous detection systems (ADSs) are under development to detect agents of biologic and chemical terror in the environment. These systems will eventually be able to detect biologic and chemical hazards reliably and provide approximate real-time alerts that an agent is present. One type of ADS that tests specifically for Bacillus anthracis is being deployed in hundreds of postal distribution centers across the United States. Identification of aerosolized B. anthracis spores in an air sample can facilitate prompt on-site decontamination of workers and subsequent administration of postexposure prophylaxis to prevent inhalational anthrax. Every employer who deploys an ADS should develop detailed plans for responding to a positive signal. Responding to ADS detection of B. anthracis involves coordinating responses with community partners and should include drills and exercises with these partners. This report provides guidelines in the following six areas: 1) response and consequence management planning, including the minimum components of a facility response plan; 2) immediate response and evacuation; 3) decontamination of potentially exposed workers to remove spores from clothing and skin and prevent introduction of B. anthracis into the worker's home and conveyances; 4) laboratory confirmation of an ADS signal; 5) steps for evaluating potentially contaminated environments; and 6) postexposure prophylaxis and follow-up. IntroductionThe risk for terrorist events involving the intentional airborne release of infectious agents has led to development of new approaches for sampling and testing ambient air both indoors and outdoors (1). One such approach is the use of an autonomous detection system (ADS) that combines automated air sampling and testing. An ADS continuously samples air that impinges in a buffer solution. An automated detection assay (e.g., a real-time polymerase chain reaction [PCR] test or an immunoassay) analyzes the trapped material at a defined sampling interval (e.g., every 1.5 hours). All ADSs under development have a way of alerting authorities of a positive signal. The result is an approximate real-time detection and alerting system. One type of ADS, the Biohazard Detection System (BDS), was developed under contract with the U.S. Postal Service (USPS) specifically to detect aerosolized Bacillus anthracis spores. USPS plans to install BDS in approximately 300 mail processing and distribution centers (PDCs) across the United States. PDCs have high-speed mail-handling equipment that can aerosolize B. anthracis spores sent through the mail, as demonstrated during the 2001 anthrax attacks. USPS will install BDS devices on or near key equipment that processes incoming mail (e.g., advanced facer-canceller system machines). Identification of aerosolized B. anthracis spores in an air sample is necessary for prompt on-site decontamination of workers and subsequent postexposure prophylaxis (PEP) before the onset of symptoms and to interrupt the flow of contaminated letters or packages into the postal stream. This report provides voluntary guidance for employers, state and local health departments, emergency responders, hospitals, health-care providers, and others preparing to use an ADS in a workplace with machinery or production facilities that might aerosolize B. anthracis spores mechanically. BackgroundCharacteristics of AnthraxAnthrax is a zoonotic disease caused by the spore-forming bacterium Bacillus anthracis. B. anthracis spores remain viable in the environment for years, representing a potential source of infection. Anthrax occurs in humans in three clinical forms: inhalational, gastrointestinal, and cutaneous. Inhalational anthrax results from aerosolization of B. anthracis spores through industrial processing or intentional release. Gastrointestinal or oropharyngeal forms of the disease result from ingestion of infected undercooked or raw meat. Cutaneous anthrax is the most common type of naturally acquired anthrax infection and usually occurs after skin contact with contaminated products from infected animals. Historically, the case-fatality rate for cutaneous anthrax has been <1% with antibiotic treatment and 20% without antibiotic treatment (2--4). Case-fatality rates for inhalational anthrax are high, even with appropriate antibiotics and supportive care (5). Among the 18 cases of inhalational anthrax identified in the United States during the 20th century, the overall case-fatality rate was >75%. After the biologic terrorism attack in fall 2001 in which B. anthracis spores were released through the mail, the case-fatality rate for patients with inhalational anthrax was 45% (5 of 11 cases) (5,6). The incubation period for anthrax is usually <2 weeks; however, because of spore dormancy and slow clearance from the lungs, the incubation period for inhalational anthrax can be prolonged for months. This phenomenon of delayed onset has not been recognized for cutaneous or gastrointestinal exposures. Discharges from cutaneous lesions are potentially infectious, but person-to-person transmission has been reported rarely. Person-to-person transmission of inhalational anthrax has not been documented. B. anthracis is one of the biologic agents most likely to be used as a weapon because 1) its spores are highly stable; 2) the spores can infect through the respiratory route; and 3) the resulting inhalational disease has a high case-fatality rate. In 1979 an unintentional release of B. anthracis spores from a military microbiology facility in the former Soviet Union resulted in 69 deaths (7). The anthrax outbreak after B. anthracis spores were distributed through the U.S. mail system in 2001 further underscores the dangers of this organism as a terrorist threat (6). After a terrorist attack, exposures to B. anthracis spores can occur through primary and secondary aerosols. Primary aerosols are dispersions of particles in air resulting from a biologic agent's initial release, whether through a disseminating device or through handling of an agent-containing package (e.g., in mechanical processing of mail). Secondary aerosols result from disruption and resuspension of settled particles. Through agglomeration (to other spores or debris) or other changes, these settled particles might not retain the characteristics of the original material (8); consequently, resuspension can result in larger diameter particle aerosols and lower airborne concentrations, both of which decrease the risk for exposure when compared with primary aerosols. Particle sizes of primary and secondary aerosols vary. Airborne particles <100 µm in size compose an aerosol, whereas particles >100 µm settle relatively quickly (8). Typical room air velocities exceed the settling velocities of extremely small particles (i.e., approximately 5 µm in diameter), and such particles therefore tend to remain airborne for prolonged periods (and can travel farther) before impacting or settling on a surface. Particles composed of single spores or small clusters of spores have diameters of a few micrometers (e.g., 5--10 µm) and move with general air-flow patterns without rapid settling. Resuspension of settled particles depends on such factors as particle size and the type of surface on which the particles settle. Although resuspension of certain settled particles requires substantial amounts of energy, lower energy activities (e.g., paper handling, foot traffic, mail handling, and patting of chairs) can reaerosolize settled B. anthracis spores (9,10). The clinical and epidemiologic presentations of anthrax after an intentional release vary by the population targeted, the characteristics of the spores, the mode and source of exposure, and other characteristics. Response and Consequence Management PlanningAfter an ADS is installed, a positive signal indicating possible presence of a biologic agent requires a coordinated, swift, and effective response. Therefore, an ADS should only be installed if
|